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Motivation: Mixed, Big Data

Mixed Data: Heterogeneous data types (e.g. continuous, skewed
continuous, binary, categorical, counts, ordinal).

Examples:

National Security.

Internet Data and
Advertising.

Biomedical Imaging.

Climate data.

Genomics.

Visualization of mutations and functional genomic

interactions in Glioblastoma
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Markov Random Fields

X = (X1,X2, ...,Xp) a random vector.

A graph G represented by a pair (V,E).
I V: finite vertex set.
I E ⊂ V× V: edge set.

Undirected graphical models or pair-wise Markov Random Fields.

Captures direct dependencies.

No edge => conditional independence (pair-wise).

(X ,Y ) /∈ E ⇐⇒ X |= Y | all other variables

Hammersley-Clifford Theorem: Density on graph
factorizes according to sufficient statistics on
cliques

p(X ) =
1

Z
ψA(XA)ψB (XB )ψC (XC )
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Motivation: Networks from RNA-Sequencing Data

Gaussian Graphical Models have been widely used to infer genomic
networks from microarray data:

Applications of Inferred Networks: Visualizing data, discovering biomarkers
(hubs), regulatory pathways, potential drug targets.
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Motivation: Networks from RNA-Sequencing Data
Next generation sequencing technology is rapidly replacing the microarray.
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Gaussian Graphical Models not appropriate for next generation sequencing
(RNA-seq) data!
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Graphical Models from Count or Other Data Types?

1 Gaussian Graphical Model.
I Conditional distributions are Gaussian, jointly multivariate Gaussian.
I Sparse Graphical Model Estimation. (Meinshaussen & Buhlmann,

2006; Yuan & Lin, 2007; Banerjee et al., 2008; Friedman et al., 2008)

2 Ising & Potts Model.
I Assumes node-conditional distributions are binomial / multinomial.
I Sparse Graphical Model Estimation. (Ravikumar et al., 2010)

3 Mixed Gaussian - Ising Model.
I Graphical Models (Lauritzen (1996)).

F Continuous variables conditioned on all combos discrete variables are
multivariate Gaussian.

F Scales exponentially.

I Learning the Structure of Mixed Graphical Models (Lee and Hastie
(2012)).

I High-Dimensional Mixed Graphical Model (Cheng, Levina, Zhu (2013)).
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Review: Univariate Exponential Families

Examples:

Gaussian, Bernoulli, Poisson, Binomial, Negative Binomial,
Exponential, . . .

P(Z ) = exp (θB(Z ) + C (Z )− D(θ))

θ is the canonical parameter.

B(Z ) is the sufficient statistic.

C (Z ) is the base measure.

D(θ) is the log-partition function.
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Graphical Models via Exponential Families

For a random vector X = (X1,X2, . . .Xp), suppose:

Node-conditional distributions are univariate exponential family
densities.

Cliques are of order at most k.

Theorem

Joint Density necessarily has the form:

P(X ) = exp

{∑
s

θsB(Xs) +
∑
s∈V

∑
t∈N(s)

θst B(Xs)B(Xt)

+
∑
s∈V

∑
t2,...,tk∈N(s)

θs...tk B(Xs)
k∏

j=2

B(Xtj ) +
∑

s

C (Xs)− A(θ)

}

N(s) denotes the neighborhood of node s & A(θ) is the log-normalization term.
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Graphical Models via Exponential Families
Special Case:

Cliques of order at most k = 2 (pair-wise interactions).

Linear sufficient statistics B(Xs) = Xs .

Joint Density

P(X ) = exp

∑
s

θsXs +
∑

(s,t)∈E

θst Xs Xt +
∑

s

C (Xs)− A(θ)

 .

Node-Conditional Density

P(Xs |XV \s) ∝ exp


θs +

∑
t∈N(s)

θstXt

Xs + C (Xs)

 ,

i.e. a Generalized Linear Model.
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Graphical Models via Exponential Families

Example of Poisson Graphical Model (Count Data):

P(X ) = exp

∑
s

θsXs +
∑

(s,t)∈E

θst Xs Xt +
∑

s

log(Xs !)− A(θ)

 .

Technical conditions needed to ensure proper densities.

Other examples of novel graphical models:
I Variations of Poisson case: Truncation, Sub-linear, Quadratic, and

approximations to these.
I Exponential, Gamma, Negative Binomial, etc.
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Results: Breast Cancer microRNA Network

The Cancer
Genome Atlas
(TCGA) Level III
Data.

544 tumor
samples, 524
miRNAs.

miRNA-
sequencing
(counts).

hsa-mir -512-2

hsa-mir-489

hsa-mir-525

hsa-mir-3941

hsa-mir-618

hsa-mir-449a

hsa-mir-526b

hsa-mir -512-1

hsa-mir-449b

hsa-mir-520b

hsa-mir-517a

hsa-mir -138-2

hsa-mir-624

hsa-mir-4326

hsa-mir-632

hsa-mir-3944

hsa-mir-520d

hsa-mir -514-1

hsa-mir -514-3

hsa-mir-520h

hsa-mir-520g

hsa-mir-499

hsa-mir-676 hsa-mir-581 hsa-mir-580

hsa-mir-3940 hsa-mir-3927

hsa-mir-320e

hsa-mir-517b

hsa-mir-518c

hsa-mir-519c

hsa-mir-449c
hsa-mir -514-2

hsa-mir-211

hsa-mir-206

hsa-mir-133a-2
hsa-mir-133b

hsa-mir-3150

hsa-mir-3690 hsa-mir-133a-1

hsa-mir-891a

hsa-mir-451

hsa-mir-658

hsa-mir-3652

hsa-mir -3199-1
hsa-mir-3194

hsa-mir-607

hsa-mir-378b

hsa-mir-144

hsa-mir-551b

hsa-mir-184

hsa-mir-224

hsa-mir-378c

hsa-mir-200a
hsa-mir-342

hsa-mir-126

hsa-mir-145

hsa-mir-643

hsa-mir-22

hsa-mir-99b
hsa- le t -7 f -2

hsa-mir-139
hsa-mir-1284

hsa-mir-142

hsa-mir-187

hsa-mi r -1 -2

hsa-mir-183
hsa-mir-934

hsa-mir-21

hsa-mir-452

hsa-mir-203

hsa-mir-200b

hsa-mir-200c

hsa-mir-148a

hsa-mir-3622a

hsa-mir-1254
hsa-mir-143

hsa-mir-1277
hsa-mir-605hsa-mir-545

hsa-mir-301b

hsa-mir-33b

hsa-mir-3664

hsa-mir-150

hsa-mir-10b

hsa-mir-100

hsa-mir-3176

hsa-let-7c

hsa-mir-636
hsa-mir-29a

hsa-mir-1251
hsa-mir-1269 hsa-mir-3619

hsa-mir -3199-2

hsa-mir-585 hsa-mir-3651hsa-mir-579

hsa-mir-556hsa-mir-210

hsa-mir-639

hsa-mir-592

hsa-mir-3174

hsa-mir-147b

hsa-mir-3610

hsa-mir-196a-2

hsa-mir-486

hsa-mir-196a-1

hsa-mir-141

hsa-mir-2277

hsa-mir-1247

hsa-mir-3136

hsa-mir-1537

hsa-let-7b

hsa- let-7a-2

hsa-mir-577

hsa-mir-375

hsa-mir-135b

hsa-mir -103-1

hsa-mir-767

hsa- let-7a-3

hsa-mir-548o

hsa-mir-30d

hsa-mir-92a-2

hsa-mir-548s

hsa-mi r -7 -2

hsa-mir-25

hsa-mir-338

hsa-mir-2114

hsa-mir-149

hsa-mir -138-1 hsa-mir-29c

hsa-mir-3678

hsa- let-7a-1

hsa-mir-548t

hsa-mir-1224

hsa-mir-516a-1
hsa-mir-522

hsa-mir-527

hsa-mir-516a-2

hsa-mir-518a-2

hsa-mir-519a-1

hsa-mir-518a-1

hsa-mir-518e

hsa-mir-520a

hsa-mir-518b

hsa-mir-519d

hsa-mir-520f

hsa-mir-519a-2

hsa-mi r -7 -3

hsa-mir-135a-2

hsa-mir-3682

hsa-mir -105-1

hsa-mir-3191

hsa-mir-30a

hsa-mir -105-2

hsa-mir -153-2

hsa-mir -153-1

hsa-mir-190b

hsa-mir-182

hsa-mir-10a

hsa-mir -101-1

hsa-mir-543

hsa-mir-380

hsa-mir -329-1
hsa-mir-541

hsa-mir-1910

hsa-mir-487a

hsa-mir-376a-1

hsa-mir-494

hsa-mir-376a-2

hsa-mir-1292

hsa-mir-376b

hsa-mir-433

hsa-mir-656

hsa-mir -329-2

hsa-mir-204

hsa-mir-202

hsa-mir-488

hsa-mir-99a

hsa-mir-383

hsa-mir -125b-1

hsa-mir-3187

hsa-mir-1295
hsa-mir -3926-2

hsa-mir-1262

hsa-mir-1229

hsa-mir-379

hsa-mir-665

hsa-mir-1258

hsa-mir-3648

hsa-mir-3662

hsa-mir-944

hsa-mir-205

hsa-mir-663

hsa-mir-1237

hsa-mir-3687

hsa-mir-135a-1

hsa-mir-3922 hsa-mir-3919hsa-mir-3923

hsa-mir -320d-2

hsa-mir-561

hsa-mi r -9 -2

hsa-mir -320d-1

hsa-mir-570 hsa-mir-552 hsa-mir -548f -1

hsa-mir-3909hsa-mir-3911

hsa-mir-551a hsa-mir-548e

hsa-mir-3912hsa-mir-3917

hsa-mir-548y hsa-mir-548b

hsa-mir-374c

hsa-mir -516b-1

hsa-mir-372

hsa-mir-504hsa-mir-506hsa-mir -516b-2

hsa-mir-3620hsa-mir-3691 hsa-mir-3680

hsa-mir -129-1

hsa-mir-885hsa-mir -3156-2 hsa-mir -129-2 hsa-mir-873

hsa-mi r -9 -1 hsa-mir -3156-1

hsa-mir-935

G. I. Allen (Rice & BCM) A General Framework for Mixed Graphical Models June 4, 2014 9 / 22



Motivation: Big, Mixed Genomics Data

TCGA Genomics Data:

SNPs / Copy Number
Variation

I binary or discrete data.

Gene Expression (via RNA
Sequencing)

I count data.

Methylation
I continuous data.

Other data types:
I microRNA expression
I Proteomics

No general multivariate density that directly parameterizes dependencies
for mixed variables exists!

G. I. Allen (Rice & BCM) A General Framework for Mixed Graphical Models June 4, 2014 10 / 22



Mixed Graphical Models

Building Mixed MRFs:

p-variate random response vector

X := (X1, ...,Xp),Xr ∈ Xr

{Xr}r∈V potentially all distinct data types.

Node-Conditional Distribution P(Xr |XV \r ) is specified via Univariate
Exponential Family =⇒ consistent joint density

P(Xr |XV \r ) = exp
(
Er (XV \r )Br (Xr ) + Cr (Xr )− D̄r (XV \r )

)
Er (XV \r ) : function of the values at sites neighboring site r
Br (Xr ) : sufficient statistic
Cr (Xr ) : base measure
D̄r (XV \r ) : log-partition function
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Mixed Graphical Models
Clique Factors of Size at Most Two and Two Types of Variables

The joint distribution:

P(X ,Y ; θ) = exp

 X
r∈VX

θrBX (Xr ) +
X

r′∈VY

θr′BY (Yr′)

+
X

(r,t)∈EX

θrt BX (Xr ) BX (Xt) +
X

(r′,t′)∈EY

θr′t′ BY (Yr′) BY (Yt′)

+
X

(r,r′)∈EXY

θrr′ BX (Xr ) BY (Yr′) +
X

r∈VX

CX (Xr ) +
X

r′∈VY

CY (Yr′)− A
`
θ
´ff

A
`
θ
´

:= log

Z
X p

exp

 X
r∈VX

θrBX (Xr ) +
X

r′∈VY

θr′BY (Yr′) + ...+
X

r′∈VY

CY (Yr′)

ff

BX (.),CX (.) sufficient statistic and base measure for the node-cond distrib of X
BY (.),CY (.) sufficient statistic and base measure for the node-cond distrib of Y
θr = (θr , θrt) set of parameters
A
(
θ
)

log-partition function
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Mixed MRFs

Advantage:

General mixed multivariate distribution exists!

Caveat:

Stringent Normalizability Assumptions.
I A(θ) <∞.
I No distribution exists linking Poisson and Gaussian variables.

Solution:

Chain rule of conditional probability: P(X ,Y ) = P(Y |X )P(X ).
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Hydra Graphs: Elementary Construction

Partition p variables into two groups: X = {Y ,Z}:

P(X ) = P1(Y |Z )P2(Z )

P1 is a Conditional Markov Random Field constructed via
node-conditional exponential families.

I Heterogeneous (Mixed).
I Homogeneous.

P2 is a Markov Random Field constructed via node-conditional
exponential families.

I Heterogeneous (Mixed).
I Homogeneous.
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Hydra Graphs: Elementary Construction
Homogeneous Elementary Hydra Graphs:

Heterogeneous Elementary Hydra Graphs:
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Hydra Graphs: Recursively Chained
Idea: Recursively apply chain rule to partitions of variables.

P(X , Y , Z ) = P(X |Y , Z )P(Y |Z )P(Z )

X
Z

Y

Directed edges: CRFs & Undirected edges: MRFs
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Hydra Graphs: Recursively Chained

To yield a consistent joint density:
Blocked Directed Acyclic Graph (DAG):

I Within Block: Undirected edges.
I Between Blocks: Directed edges (no cycles!).

Each CRF / MRF component must be normalizable.
I Much weaker conditions than Mixed MRFs.

Permits dependent Gaussian and Poisson distributions!
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Graph Selection and Estimation

Objective: Given iid observations, seek to learn graph structure
(selection) and parameters (estimation).

Node-Neighborhood Selection - For each node:

Maximize penalized conditional likelihood = Mixed, penalized GLMs!

Theoretical Guarantees (under certain conditions):

Unique solution.

With high probability, exactly recover the true edge structure.

Consistent parameter estimation.

`1 regularized M-estimator

− ||Xr − X/rθxx − Y θxy ||22 + λ1||θxx ||1 + λ2||θxy ||1,

G. I. Allen (Rice & BCM) A General Framework for Mixed Graphical Models June 4, 2014 15 / 22



1 Introduction

2 Graphical Models via Exponential Families
Graphical Models via Exponential Families
Mixed Graphical Models

3 Results

G. I. Allen (Rice & BCM) A General Framework for Mixed Graphical Models June 4, 2014 16 / 22



Simulation Study

Samples generated via
Gibbs sampling.

Lattice structure

p = 72: pY = 36, pZ = 36

Sample sizes:
n=50, 72, 100 and 200.
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Simulation Study

Figure: ROC curves for different types of models when pY = 36, pZ = 36.
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Simulation Study

Figure: ROC curves for 3 blocks of variables: binary (Ising, X), continuous
(Gaussian, Y ) and counts (Poisson, Z).
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Case Study: Breast Cancer Genomics

Objective: Identify both between and within connections between
mutation and expression biomarkers.

Gene expression: TCGA Level III RNA-sequencing (counts).

Mutations & Aberrations: Combination of TCGA Level II non-silent
somatic mutation and TCGA Level III copy number variation (binary).

697 patients and 498 genes (329 expression biomarkers & 169
mutation biomarkers).

Modeled via Poisson CRF- Ising MRF (mutations influence
expression).

Stability selection for model selection.
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Case Study: Breast Cancer Genomics
Yellow nodes: RNA-sequencing; Blue nodes: genomic mutations

Our model was able to identify previously discovered and some new links of highly

mutated cancer bio-markers
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Case Study: Breast Cancer Genomics

Discovery of Previously Indicated Links:

GATA3 mutation linked to SLC39A6 expression.
I Ratio of gene expression levels used to defined breast cancer sub-types.

FGFR1 mutation linked to PEG3 expression.
I FGFR1 growth factors amplified in breast cancer work with PEG3

which modulates cancer progression.

STAT3 mutation linked to ERBB2 expression.
I Amplified in HERB2 sub-types and promotes cancer stem-cell

proliferation.
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Case Study: Breast Cancer Genomics

Novel Discoveries:

TP53 mutation linked to ADAM6 expression.
I TP53 a tumor suppressor gene & ADAM6 a long non-coding RNA

over-expressed in breast cancer.

FGF3 mutation linked to CCND1 expression.
I FGF3 regulates estrogen expanding breast cancer stem cells & CCDN1

over-expression of hormone receptors in breast cancer.

PIK3CA mutation linked to CLEC3A expression and NAT1 expression.

I PIK3CA an oncogene, CLEC3A affects tumor metastasis, and NAT1 a
potential marker for estrogen receptor positive sub-type.
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Summary

Mixed Graphical Models

Extends Markov Networks for (almost) any data type.

First ever direct multivariate density for mixed data types!

Hydra Graphs: Flexible models.

Can be used to model connections both within and between multiple
types of biomarkers.

R & Bioconductor Package & Matlab Toolbox expMRF coming soon.
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