Implementing Personalized Medicine: Estimation of Optimal Dynamic Treatment Regimes

Anastasios (Butch) Tsiatis

Department of Statistics North Carolina State University

Assume: Large outcomes are good

An optimal regime:

- A *regime* that, if followed by all patients in the population, yields the *largest outcome on average*
- That is, yields the largest value

Goal: Given *data* (*evidence*) from a clinical trial or observational study, *estimate* an *optimal regime* satisfying this definition

• For now: Consider regimes involving a single decision/rule

Simplest setting: A single decision with two treatment options A = {0, 1}

Observed data: $(Y_i, X_i, A_i), i = 1, ..., n$, iid

• *Y_i* outcome, *X_i* baseline covariates, *A_i* = 0, 1 treatment received

Treatment regime: A single rule

• A function $d : \mathcal{X} \to \{0, 1\}$

Breast cancer example: Which treatment to give patients who present with *primary operable breast cancer*?

- Two treatment options (0 or 1), *x* =(age, PR)
- Possible rules

```
d(age, PR) = I(age < 50 \text{ and } PR < 10)
```

```
d(age, PR) = I\{age + 8.7log(PR) - 60 > 0\}
```

Goal, restated:

- Let \mathcal{D} be the class of *all* possible regimes *d*
- Estimate d^{opt} ∈ D such that, if d^{opt} were followed by all patients in the population, it would lead to largest average outcome (value) among all regimes in D

Reminder: We can hypothesize potential outcomes

- Y*(1) = outcome that would be achieved if patient were to receive 1; Y*(0) defined similarly
- E{Y*(1)} is the average outcome if all patients in the population were to receive 1; and similarly for E{Y*(0)}
- We observe

$$Y = Y^{*}(1)A + Y^{*}(0)(1 - A)$$

No unmeasured confounders: Assume that

 $Y^*(0), Y^*(1) \perp A | X$

- X contains all information used to assign treatments
- Automatically satisfied for data from a randomized trial
- Standard but *unverifiable* assumption for *observational studies*
- Implies that

$$E\{Y^{*}(1)\} = E[E\{Y^{*}(1)|X\}]$$

= $E[E\{Y^{*}(1)|X, A = 1\}]$
= $E\{E(Y|X, A = 1)\}$

and similarly for $E\{Y^*(0)\}$

$$E\{Y^{*}(1)\} = E\{E(Y|X, A = 1)\}$$

Implication for estimating $E\{Y^*(1)\}$: Similarly for $E\{Y^*(0)\}$

- E(Y|X, A) = Q(X, A) is the *regression* of Y on X and A
- E(Y|X, A) is unknown
- Posit a *model* $Q(X, A; \beta)$ for Q(X, A)
- Estimate β based on observed data ⇒ β
 (e.g., least squares)
- *Estimator* for *E*{*Y**(1)}

$$n^{-1}\sum_{i=1}^{n}Q(X_i,1;\widehat{\beta})$$

Potential outcome for a regime:

For any *d* ∈ D, define *Y*^{*}(*d*) to be the *potential outcome* for a patient if s/he were given treatment according to regime *d*

$$Y^*(d) = Y^*(1)d(X) + Y^*(0)\{1 - d(X)\}$$

- *E*{*Y*^{*}(*d*)} is the *average outcome for the population* if all patients were treated according to regime *d*
- That is, $E\{(Y^*(d))\} = V(d)$ is the *value* of regime d

$$Y^*(d) = Y^*(1)d(X) + Y^*(0)\{1 - d(X)\}$$

Value of regime d: Using no unmeasured confounders

$$E\{Y^*(d)\} = E[E\{Y^*(d)|X\}]$$

= $E[E\{Y^*(1)|X\}d(X) + E\{Y^*(0)|X\}\{1 - d(X)\}]$
= $E[E(Y|X, A = 1)d(X) + E(Y|X, A = 0)\{1 - d(X)\}]$
= $E[Q(X, 1)d(X) + Q(X, 0)\{1 - d(X)\}],$

where E(Y|X, A) = Q(X, A)

Estimating the Value of a Regime

$$E\{Y^*(d)\} = E[Q(X,1)d(X) + Q(X,0)\{1 - d(X)\}]$$

Again: E(Y|X, A) is not known

- Posit a model $Q(X, A; \beta)$ for E(Y|X, A)
- Estimate β based on observed data $\Longrightarrow \hat{\beta}$ (e.g., least squares)
- Estimate $V(d) = E\{Y^*(d)\}$ by

$$\widehat{V}(d) = n^{-1} \sum_{i=1}^{n} [Q(X_i, 1, \widehat{\beta})d(X_i) + Q(X_i, 0, \widehat{\beta})\{1 - d(X_i)\}]$$

Optimal Regime

Reminder: d^{opt} is a regime in \mathcal{D} such that

- $E{Y^*(d)} \le E{Y^*(d^{opt})}$ for all $d \in D$
- $E{Y^*(d)|X = x} \le E{Y^*(d^{opt})|X = x}$ for all $d \in D$ and $x \in \mathcal{X}$

Optimal regime:

$$d^{opt}(x) = \arg \max_{a = \{0,1\}} E\{Y^*(a) | X = x\}$$

• Thus

$$d^{opt}(x) = I[E\{Y^*(1)|X=x\} > E\{Y^*(0)|X=x\}]$$

= I{ Q(x,1) > Q(x,0) }

Estimating the Optimal Regime

"Regression estimator":

• *Estimate* d^{opt} by

$$\widehat{d}_{REG}^{opt}(x) = I\{ Q(x,1;\widehat{\beta}) > Q(x,0;\widehat{\beta}) \}$$

• Estimator for $V(d^{opt}) = E\{Y^*(d^{opt})\}$

$$\widehat{V}_{REG}(\widehat{d}_{REG}^{opt}) = n^{-1} \sum_{i=1}^{n} \left[Q(X, 1_i, \widehat{\beta}) \widehat{d}_{REG}^{opt}(X_i) + Q(X, 0_i, \widehat{\beta}) \{ 1 - \widehat{d}_{REG}^{opt}(X_i) \} \right]$$

Concern: $Q(X, A; \beta)$ may be *misspecified*, so \widehat{d}_{REG}^{opt} could be far from d^{opt}

Alternative perspective: $Q(X, A; \beta)$ defines a *class* of regimes

$$d(x,\beta) = I\{Q(x,1;\beta) > Q(x,0;\beta)\},\$$

indexed by β , that may or may not contain d^{opt}

• E.g., suppose in truth

$$E(Y|X,A) = \exp\{1 + X_1 + 2X_2 + 3X_1X_2 + A(1 - 2X_1 + X_2)\}$$

$$\implies d^{opt}(x) = l(x_2 \ge 2x_1 - 1)$$
 (hyperplane)

Posited model:

 $Q(X, A; \beta) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + A(\beta_3 + \beta_4 X_1 + \beta_5 X_2)$

Regimes *I*{*Q*(*x*, 1; β) > *Q*(*x*, 0; β)} define a *class of regimes* D_η with elements

$$I(x_2 \ge \eta_1 x_1 + \eta_0)$$
 or $I(x_2 \le \eta_1 x_1 + \eta_0), \ \eta_0 = -\beta_3/\beta_5, \ \eta_1 = -\beta_4/\beta_5$

depending on the sign of β_5

- Parameter η is defined as a *function of* β
- The optimal regime *in this case* is contained in \mathcal{D}_{η}
- However, the estimated regime *I*{*Q*(*x*, 1; β̂) > *Q*(*x*, 0; β̂} may not estimate the optimal regime within D_η if the posited model is *incorrect*

Suggests: Consider *directly* a *restricted class of regimes* \mathcal{D}_{η} with elements of form

$$d(x;\eta) = d_{\eta}(x)$$
 indexed by η

 Such regimes may be motivated by a regression model or based on *cost*, *feasibility* in practice, *interpretability*; e.g.,

$$d(x; \eta) = l(x_1 < \eta_0, x_2 < \eta_1)$$

- \mathcal{D}_{η} may or may not contain d^{opt} but is still of interest
- Optimal restricted regime $d_{\eta}^{opt}(x) = d(x; \eta^{opt}),$

$$\eta^{opt} = \arg \max_{\eta} E\{Y^*(d_{\eta})\}$$

Estimating the Optimal Restricted Regime

Optimal restricted regime: $d_{\eta}^{opt}(x) = d(x; \eta^{opt}),$

$$\eta^{opt} = \arg \max_{\eta} E\{Y^*(d_{\eta})\} = \arg \max_{\eta} V(d_{\eta})$$

Approach:

- Directly estimate the value V(d_η) = E{Y*(d_η)} for any fixed η ⇒ V(d_η)
- Estimate the optimal restricted regime by finding

$$\widehat{\eta}^{opt} = \arg \max_{\eta} \widehat{V}(d_{\eta}) \implies \widehat{d}_{\eta}^{opt}(x) = d(x; \widehat{\eta}^{opt})$$

• We refer to this as a *value search estimator* for d_{η}^{opt}

Required: A "*good*" estimator for $V(d_{\eta})$

- Missing data analogy
- Let C_{η} denote η -regime consistency indicator

$$C_{\eta} = Ad(X; \eta) + (1 - A)\{1 - d(X; \eta)\}$$

- "Full data" are $\{X, Y^*(d_\eta)\}$; "observed data" are $(X, C_\eta, C_\eta Y)$
- → Only a subset of subjects have observed outcomes under d_η; the rest are *missing*

$$C_{\eta} = Ad(X;\eta) + (1-A)\{1-d(X;\eta)\}$$

Propensity scores:

- $\pi(X) = pr(A = 1|X)$ is the *propensity score* for treatment
- Randomized trial: $\pi(X)$ is known
- Observational study: Posit a model π(X; γ) (e.g., logistic regression) and fit using (A_i, X_i), i = 1,..., n ⇒ γ̂.
- Propensity of receiving treatment consistent with d_η

$$\pi_{c}(X;\eta) = \operatorname{pr}(C_{\eta} = 1|X) = E(C_{\eta}|X)$$

= $E[Ad(X;\eta) + (1-A)\{1 - d(X;\eta)\}|X]$
= $\pi(X)d(X;\eta) + \{1 - \pi(X)\}\{1 - d(X;\eta)\}$

• Write $\pi_c(X; \eta, \gamma)$ with $\pi(X; \gamma)$

Estimators for $V(d_{\eta}) = E\{Y^*(d_{\eta})\}$: For fixed η

Inverse probability weighted estimator

$$\widehat{V}_{IPWE}(d_{\eta}) = n^{-1} \sum_{i=1}^{n} \frac{C_{\eta,i} Y_i}{\pi_c(X_i; \eta, \widehat{\gamma})}.$$

• *Consistent* for $V(d_{\eta})$ if $\pi(X; \gamma)$ (hence $\pi_{c}(X; \eta, \gamma)$) is *correct*

Consistency:

$$E\left\{\frac{C_{\eta}Y}{\pi_{c}(X;\eta)}\right\} = E\left\{\frac{C_{\eta}Y^{*}(d_{\eta})}{\pi_{c}(X;\eta)}\right\}$$
$$= E\left[E\left\{\frac{C_{\eta}Y^{*}(d_{\eta})}{\pi_{c}(X;\eta)}\middle|Y^{*}(d_{\eta}),X\right\}\right]$$
$$= E\left[\frac{E\{C_{\eta}|Y^{*}(d_{\eta}),X\}Y^{*}(d_{\eta})}{\pi_{c}(X;\eta)}\right]$$
$$= E\left[\frac{E\{C_{\eta}|X\}Y^{*}(d_{\eta})}{\pi_{c}(X;\eta)}\right]$$
$$= E\left\{\frac{\pi_{c}(X;\eta)Y^{*}(d_{\eta})}{\pi_{c}(X;\eta)}\right\} = E\{Y^{*}(d_{\eta})\}$$

Estimators for $V(d_{\eta}) = E\{Y^*(d_{\eta})\}$: For fixed η

• Doubly robust augmented inverse probability weighted estimator

$$\widehat{V}_{AIPWE}(d_{\eta}) = n^{-1} \sum_{i=1}^{n} \left\{ \frac{C_{\eta,i}Y_i}{\pi_c(X_i;\eta,\widehat{\gamma})} - \frac{C_{\eta,i} - \pi_c(X_i;\eta,\widehat{\gamma})}{\pi_c(X_i;\eta,\widehat{\gamma})} m(X_i;\eta,\widehat{\beta}) \right\}$$

 $m(X;\eta,\beta) = E\{Y^*(d_{\eta})|X\} = Q(X,1;\beta)d(X;\eta) + Q(0,X;\beta)\{1 - d(X;\eta)\}$

and $Q(X, A; \beta)$ is a model for E(Y|X, A)

• Consistent if either $\pi(X, \gamma)$ or $Q(X, A; \beta)$ is correct

Augmented Estimator

Under MAR: $Y^*(d_\eta) \perp C_\eta | X$ • If $\widehat{\gamma} \xrightarrow{p} \gamma^*$ and $\widehat{\beta} \xrightarrow{p} \beta^*$, this estimator \xrightarrow{p} $E\left\{\frac{C_\eta Y}{\pi_c(X;\eta,\gamma^*)} - \frac{C_\eta - \pi_c(X;\eta,\gamma^*)}{\pi_c(X;\eta,\gamma^*)}m(X;\eta,\beta^*)\right\}$ $= E\left[Y^*(d_\eta) + \left\{\frac{C_\eta - \pi_c(X;\eta,\gamma^*)}{\pi_c(X;\eta,\gamma^*)}\right\}\{Y^*(d_\eta) - m(X;\eta,\beta^*)\}\right]$ $= E\{Y^*(d_\eta)\} + E\left[\left\{\frac{C_\eta - \pi_c(X;\eta,\gamma^*)}{\pi_c(X;\eta,\gamma^*)}\right\}\{Y^*(d_\eta) - m(X;\eta,\beta^*)\}\right]$

- Hence the estimator is *consistent* if *either*
 - $\pi(X;\gamma^*) = \pi(X) \Rightarrow \pi_c(X;\eta,\gamma^*) = \pi_c(X;\eta)$ (propensity correct)
 - ► $Q(X, A; \beta^*) = Q(X, A) \Rightarrow m(X; \eta, \beta^*) = m(X; \eta)$ (regression correct)
 - Double robustness

Result: Estimators $\hat{\eta}^{opt}$ for η^{opt} obtained by *maximizing* $\hat{V}_{IPWE}(d_{\eta})$ or $\hat{V}_{AIPWE}(d_{\eta})$ in η

- Estimated optimal restricted regime $\hat{d}_{\eta}^{opt}(x) = d(x; \hat{\eta}^{opt})$
- Non-smooth functions of η; must use suitable optimization techniques
- Estimators for $V(d_{\eta}^{opt}) = E\{Y^*(d_{\eta}^{opt})\}$

$$\widehat{V}_{IPWE}(\widehat{d}_{\eta,IPWE}^{opt})$$
 or $\widehat{V}_{AIPWE}(\widehat{d}_{\eta,AIPWE}^{opt})$

Can calculate standard errors

- Semiparametric theory: AIPWE is more efficient than IPWE for estimating V(d_η) = E{Y*(d_η)}
- Estimating regimes based on AIPWE should be "better"

Extensive simulations: Qualitative conclusions

- Estimated optimal regime based on *regression* can achieve the true *E*{*Y**(*d^{opt}*)} *if Q*(*X*, *A*; β) is *correctly specified*
- But performs *poorly* when $Q(X, A; \beta)$ is *misspecified*
- Estimated regimes based on *IPWE*(η) are *so-so* even if propensity model is *correct*
- Estimated regimes based on AIPWE(η) achieves the true E{Y*(d^{opt})} if Q(X, A; β) is correctly specified even if the propensity model is misspecified
- And are *much better* than the regression estimator when Q(X, A; β) is *misspecified*

- Two approaches to estimation of optimal regimes for a *single decision point*
- *Regression methods* estimate an optimal regime based on a *posited regression model*
- Value search methods estimate an optimal treatment regime within a specified class by maximizing the value
- Robustness to *misspecification* (AIPWE)
- Both methods may be extended to *multiple decision points* (later)
- Next: Alternative classification perspective for single decision

Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012). A robust method for estimating optimal treatment regimes. *Biometrics* **68**, 1010–1018.

Generic classification situation:

- Z = outcome, class, label; here, $Z = \{0, 1\}$ (binary)
- *X* = vector of covariates, *features* taking values in *X*, the *feature space*
- *d* is a *classifier*: $d : \mathcal{X} \to \{0, 1\}$
- \mathcal{D} is a *family of classifiers*, e.g.,
 - Hyperplanes of the form

$$I(\eta_0 + \eta_1 X_1 + \eta_2 X_2 > 0)$$

► Rectangular regions of the form

$$I(X_1 < a_1) + I(X_1 \ge a_1, X_2 < a_2)$$

Generic classification problem:

- *Training set:* $(X_i, Z_i), i = 1, ..., n$
- *Find* classifier $d \in D$ that minimizes

Classification error

$$\sum_{i=1}^n \{Z_i - d(X_i)\}^2$$

► Weighted classification error

$$\sum_{i=1}^n w_i \{Z_i - d(X_i)\}^2$$

Approaches:

- This problem has been studied extensively by *statisticians* and *computer scientists*
- Machine learning (supervised learning)
- Many methods and software are available
- *Recursive partitioning (CART)*: Rectangular regions
- Support vector machines: Hyperplanes, etc.

Value Search Estimators, Revisited

Recall: Estimation of $d_{\eta} \in restricted class D_{\eta}$

$$\eta^{opt} = \arg \max_{\eta} V(d_{\eta}) = \arg \max_{\eta} E\{Y^*(d_{\eta})\}$$

Doubly robust AIPWE

$$\widehat{V}_{AIPWE}(d_{\eta}) = n^{-1} \sum_{i=1}^{n} \left\{ \frac{C_{\eta,i}Y_i}{\pi_c(X_i;\eta,\widehat{\gamma})} - \frac{C_{\eta,i} - \pi_c(X_i;\eta,\widehat{\gamma})}{\pi_c(X_i;\eta,\widehat{\gamma})} m(X_i;\eta,\widehat{\beta}) \right\}$$

$$C_{\eta,i} = A_i d(X_i; \eta) + (1 - A_i) \{1 - d(X_i; \eta)\}$$

$$\pi_c(X_i; \eta, \widehat{\gamma}) = \pi(X_i; \widehat{\gamma}) d(X_i; \eta) + \{1 - \pi(X_i; \widehat{\gamma})\} \{1 - d(X_i; \eta)\}$$

$$m(X_i; \eta, \widehat{\beta}) = Q(X_i, 1; \widehat{\beta}) d(X_i; \eta) + Q(X_i, 0, \widehat{\beta}) \{1 - d(X_i; \eta)\}$$

Value Search Estimators, Revisited

Algebra: $\widehat{V}_{AIPWE}(d_{\eta})$ may be *rewritten* as

$$n^{-1}\sum_{i=1}^{n} d(X_i;\eta)\widehat{\mathcal{C}}(X_i)$$
 + terms not involving d

$$\widehat{\mathcal{C}}(X_i) = \left\{ \frac{A_i Y_i}{\pi(X_i, \widehat{\gamma})} - \frac{A_i - \pi(X_i, \widehat{\gamma})}{\pi(X_i; \widehat{\gamma})} Q(X_i, 1; \widehat{\beta}) \right\} \\ - \left\{ \frac{(1 - A_i) Y_i}{1 - \pi(X_i; \widehat{\gamma})} + \frac{A_i - \pi(X_i; \widehat{\gamma})}{1 - \pi(X_i; \widehat{\gamma})} Q(X_i, 0; \widehat{\beta}) \right\},$$

• The contrast function is

n

$$m{E}\{\widehat{\mathcal{C}}(X_i)|X_i\}pprox \mathcal{C}(X_i)=m{Q}(X_i,1)-m{Q}(X_i,0)$$

$$E\{\widehat{\mathcal{C}}(X_i)|X_i\}\approx \mathcal{C}(X_i)=Q(X_i,1)-Q(X_i,0)$$

Result: $\widehat{\mathcal{C}}(X_i)$ can be viewed as an *estimator* for the *contrast function* for subject *i*

• If we *knew* the functions $Q(X_i, 1)$ and $Q(X_i, 0)$, we should assign treatment

$$I\{C(X_i) > 0\} = I\{Q(X_i, 1) - Q(X_i, 0) > 0\}$$

to patient *i*.

Classification Perspective

$$\widehat{\eta}^{opt} = \arg \max_{\eta} \sum_{i=1}^{n} d(X_i; \eta) \widehat{\mathcal{C}}(X_i)$$

Further algebra: Another identity

$$\begin{aligned} d(X_i;\eta)\widehat{\mathcal{C}}(X_i) &= -|\widehat{\mathcal{C}}(X_i)|[I\{\widehat{\mathcal{C}}(X_i)>0\}-d(X_i;\eta)]^2 \\ &+ |\widehat{\mathcal{C}}(X_i)|I\{\widehat{\mathcal{C}}(X_i)>0\} \end{aligned}$$

Hence

$$\eta^{\hat{o}pt} = \arg\min_{\eta} \sum_{i=1}^{n} |\widehat{\mathcal{C}}(X_i)| \left[I\{\widehat{\mathcal{C}}(X_i) > 0\} - d(X_i;\eta) \right]^2,$$

$$\widehat{\eta}^{opt} = \arg\min_{\eta} \sum_{i=1}^{n} |\widehat{\mathcal{C}}(X_i)| \left[I\{\widehat{\mathcal{C}}(X_i) > 0\} - d(X_i;\eta) \right]^2$$

Alternative formulation: This can be viewed as a *weighted classification problem* with

- Label $I\{\widehat{\mathcal{C}}(X_i) > 0\}$
- Classifier $d(X_i; \eta)$
- Weight $|\widehat{\mathcal{C}}(X_i)|$

- Estimation of optimal regime using "*off-the-shelf*" classification methods
- Estimated contrast functions constructed *independently* of class of regimes
- Form of estimated optimal regime *determined by classification method*
- Extension to *multiple decisions* ongoing

Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M., and Laber, E. B. (2012). Estimating optimal treatment regimes from a classification perspective. *Stat* **1**, 103–114.

Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. *Journal of the American Statistical Association* **107**, 1106–1118. In general: K decision points

- Baseline information x₁, intermediate information x_k between decisions k - 1 and k, k = 2,..., K
- Set of *treatment options* at decision $k a_k \in A_k$
- Accrued information $h_1 = x_1 \in \mathcal{H}_1$,

$$h_k = \{x_1, a_1, x_2, a_2, \dots, x_{k-1}, a_{k-1}, x_k\} \in \mathcal{H}_k, \ k = 2, \dots, K$$

- Decision rules $d_1(h_1), d_2(h_2), \ldots, d_K(h_K), d_k : \mathcal{H}_k \to \mathcal{A}_k$
- Dynamic treatment regime $d = (d_1, d_2, \dots, d_K)$
- *D* is the set of *all possible K*-decision regimes

Recap: Optimal Regime for Multiple Decisions

Optimal regime: $d^{opt} \in \mathcal{D}$ such that a patient with *baseline information* $X_1 = x_1$ who receives all *K* treatments according to d^{opt} has expected outcome as large as possible

Potential outcomes under a regime $d \in D$:

• Baseline information X₁, potential outcomes

$$X_2^*(d_1), \ldots, X_K^*(\bar{d}_{K-1}), Y^*(d)$$

d^{opt} satisfies:

- $E{Y^*(d)} \le E{Y^*(d^{opt})}$ for all $d \in D$
- $E\{Y^*(d)|X_1 = x_1\} \le E\{Y^*(d^{opt})|X_1 = x_1\}$ for all $d \in D$ and $x_1 \in H_1$

Estimation of Optimal Treatment Regimes

K decisions: Data

 $(X_{1i}, A_{1i}, X_{2i}, A_{2i}, \dots, X_{(K-1)i}, A_{(K-1)i}, X_{Ki}, A_{Ki}, Y_i), i = 1, \dots, n$

- X_{1i} = Baseline information observed on subject i
- X_{ki}, k = 2,..., K = intermediate information between decisions k 1 and k on subject i
- *A_{ki}*, *k* = 1,..., *K* = *observed treatment* actually received by subject *i* at decision *k*
- *H_i* = *accrued information* for subject *i* up to decision *k*

$$H_{1i} = X_{1i}, \ H_{ki} = (X_{1i}, A_{1i}, \dots, A_{(k-1)i}, X_{ki}), \ k = 2, \dots, K$$

• *Y_i* = *observed outcome* for subject *i*; can be *ascertained after* decision *K* or can be a *function* of *X*_{2*i*},...,*X*_{*Ki*}

Estimation of Optimal Treatment Regimes

Goal, restated: Estimate *d*^{opt} satisfying

- $E{Y^*(d)} \le E{Y^*(d^{opt})}$ for all $d \in D$
- $E\{Y^*(d)|X_1 = x_1\} \le E\{Y^*(d^{opt})|X_1 = x_1\}$ for all $d \in D$ and $x_1 \in H_1$

Sequential randomization assumption: Data from

- A SMART
- A fabulous longitudinal observational study

For definiteness: Take K = 2 and $A_k = \{0, 1\}, k = 1, 2$

• Recall accrued information

$$H_{1i} = X_{1i}, \quad H_{2i} = (X_{1i}, A_{1i}, X_{2i})$$

Optimal regime *d^{opt}*: Follows from *backward induction* (*dynamic programming*)

- Formally in terms of *potential outcomes*
- Sequential randomization assumption allows equivalent expressions in terms of observed data (X₁, A₁, X₂, A₂, Y) (as for single decision and no unmeasured confounders)

Characterizing the Optimal Regime

Optimal regime *d*^{opt}: Backward induction

• Decision 2: $Q_2(H_2, A_2) = E(Y|H_2, A_2)$

 $d_2^{opt}(h_2) = I\{Q_2(h_2, 1) > Q_2(h_2, 0)\} = \arg \max_{a_2 = \{0, 1\}} Q_2(h_2, a_2)$

$$\widetilde{Y}_2(h_2) = \max\{Q_2(h_2, 0), Q_2(h_2, 1)\}$$

• Decision 1: $Q_1(H_1, A_1) = E\{\widetilde{Y}_2(H_2)|H_1, A_1\}$

 $d_1^{opt}(h_1) = I\{Q_1(h_1, 1) > Q_1(h_1, 0)]\} = \arg \max_{a_1 = \{0, 1\}} Q_1(h_1, a_1)$

$$\widetilde{Y}_1(h_1) = \max\{Q_1(h_1,0), Q_1(h_1,1)\}$$

- $d^{opt} = (d_1^{opt}, d_2^{opt})$
- The value of d^{opt} is $V(d^{opt}) = E\{\widetilde{Y}_1(H_1)\}$
- $\widetilde{Y}_2(h_2)$ and $\widetilde{Y}_1(h_1)$ are referred to as the value functions

Q-learning: May be thought of as a generalization of the *regression estimator* to *sequential decisions*

- Reinforcement learning in computer science
- Posit models for the "Q-functions"
- Involves some *complications* not present in the *single decision* case

Q-Learning

Estimation of *d*^{opt}:

 Decision 2: Posit and fit a model Q₂(H₂, A₂; β₂) by regressing Y on H₂, A₂ (e.g., least squares) and estimate

$$\widehat{d}_{Q,2}^{opt}(h_2) = I\{Q_2(h_2,1;\widehat{\beta}_2) > Q_2(h_2,0;\widehat{\beta}_2)\}$$

• For each *i*, form "predicted value"

$$\widehat{\widetilde{Y}}_{2i} = \widetilde{Y}_{2i}(H_{2i};\widehat{\beta}_2) = \max\{Q_2(H_{2i},0;\widehat{\beta}_2), Q_2(H_{2i},1;\widehat{\beta}_2)\}$$

Decision 1: Posit and fit a model Q₁(H₁, A₁; β₁) by regressing *Y*₂ on H₁, A₁ (e.g., least squares) and *estimate*

$$\widehat{d}_{Q,1}^{opt}(h_1) = I\{Q_1(h_1, 1; \widehat{\beta}_1) > Q_1(h_1, 0; \widehat{\beta}_1)\}$$

• Estimated regime $\hat{d}_{Q}^{opt} = (\hat{d}_{Q,1}^{opt}, \hat{d}_{Q,2}^{opt})$

Issues and challenges:

- Regardless, as in the single decision case, incorrect model specification will impact quality of estimation of d^{opt}
- Modeling at decisions K 1,..., 1 challenging due to need to model max
- More *flexible models* for *Q*-functions can be used
- Because of *nonsmooth max operator*, standard asymptotic theory is *invalid*
- Considerable current research

Generalization to K > 1:

Consider *directly* a *restricted class of regimes* D_η with elements d_η = (d_{η,1},..., d_{η,K}); at decision k

$$d_{\eta,k}(h_k) = d_k(h_k;\eta_k)$$

- Based on cost, feasibility, interpretability at each decision
- Optimal restricted regime d_{η}^{opt}

$$\eta^{opt} = \arg \max_{\eta} E\{Y^*(d_{\eta})\} = \arg \max_{\eta} V(d_{\eta})$$

- Estimator $\widehat{V}(d_{\eta})$ for fixed η ; maximize in η to obtain $\widehat{\eta}^{opt}$
- Required: A "good" $\widehat{V}(d_{\eta})$

Extend missing data analogy to monotone dropout: K = 2

• "Full data"

$$\{X_1, X_2^*(d_\eta), Y^*(d_\eta)\}$$

- Define η -regime consistency indicator C_{η}
- C_η = ∞: If a patient's *actual treatments* A₁, A₂ are *all consistent with* following d_η, then

$$(X_1, X_2, Y) = \{X_1, X_2^*(d_\eta), Y^*(d_\eta)\}$$

• $C_{\eta} = 2$: If *actual* A_1 is *consistent with* following d_{η} but A_2 is *not*, then

$$(X_1, X_2) = \{X_1, X_2^*(d_\eta)\}$$

but $Y^*(d_\eta)$ is "*missing*" ("*dropout*" before decision 2)

C_η = 1: If *neither* of A₁, A₂ is *consistent with* following d_η, both X₂^{*}(d_η), Y^{*}(d_η) are "*missing*" ("*dropout*" before decision 1)

Propensity scores: At decision k = 1, ..., K

$$\pi_k(H_k) = \operatorname{pr}(A_k = 1 | H_k)$$

- Randomized trial (SMART): $\pi_k(h_k)$ is known
- Observational study: Posit and fit models $\pi_k(h_k; \gamma_k)$
- Can express propensities of receiving treatment consistent with d_η through decision k in terms of π_k(h_k)

Result: Can develop *IPWE* and doubly-robust *AIPWE* estimators for $V(d_{\eta})$ in terms of C_{η} and $\pi_k(h_k)$

Augmented Inverse Probability Weighted Estimators

$$\begin{split} \widehat{V}_{AIPWE}(d_{\eta}) \\ &= \sum_{i=1}^{n} \left(\frac{I(C_{\eta,i} = \infty)Y_i}{\prod_{k=1}^{K} [\pi_k(H_{ki})d_{\eta,k}(H_{ki}) + \{1 - \pi_k(H_{ki})\}\{1 - d_{\eta,k}(H_{ki})\}]} \right) \\ &+ \text{ augmentation terms} \end{split}$$

Issues and challenges:

- As for K = 1, is nonstandard optimization problem
- *IPWE* (leading term for *AIPWE*) involves *only* subjects with $C_{\eta} = \infty$ (*consistent* with following regime for *all K decisions*)
- May become *infeasible for K* > 3
- *Simulation evidence:* Performance comparable to Q-learning with *correct models*; *AIPWE* is *robust* to model model misspecification while Q-learning is *not*

- Two classes of methods for estimation of optimal regimes for *multiple decision points*
- Q- and A-learning (sequential regression methods) estimate an optimal regime based on sequential posited regression models
- Potential for *model misspecification* is high
- Value search methods robustness to misspecification
- *Limitation* to small *K* due to need for "*regime consistency*"

Lunceford, J., Davidian, M., and Tsiatis, A. A. (2002). Estimation of the survival distribution of treatment regimes in two-stage randomization designs in clinical trials. *Biometrics* **58**, 48–57.

Murphy, S. A. (2005). An experimental design for the development of adaptive treatment strategies. *Statistics in Medicine* **24**, 1455–1481.

Schulte, P. J., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2014). Q- and A-learning methods for estimating optimal dynamic treatment regimes. *Statistical Science*, in press.

Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013). Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. *Biometrika* **100**, 681–694.

- Estimation of optimal treatment regimes is a *wide open* area of research
- *SMARTs* are the "*gold standard*" data source for estimation of optimal regimes
- Design considerations for SMARTs?
- *High-dimensional* covariate information? Regression *model selection*?
- "Black box" vs. restricted class of regimes?
- Inference?
- Balancing multiple outcomes (e.g., efficacy vs. toxicity)?

• . . .

Thought Leaders

2013 MacArthur Fellow Susan Murphy and Jamie Robins