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Optimal Regime

Assume: Large outcomes are good

An optimal regime:
• A regime that, if followed by all patients in the population,

yields the largest outcome on average
• That is, yields the largest value

Goal: Given data (evidence ) from a clinical trial or
observational study, estimate an optimal regime satisfying this
definition
• For now : Consider regimes involving a single decision /rule
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Statistical Framework

Simplest setting: A single decision with two treatment options
• A = {0,1}

Observed data: (Yi ,Xi ,Ai), i = 1, . . . ,n, iid
• Yi outcome, Xi baseline covariates, Ai = 0,1 treatment

received

Treatment regime: A single rule
• A function d : X → {0, 1}
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Statistical Framework

Breast cancer example: Which treatment to give patients who
present with primary operable breast cancer ?
• Two treatment options (0 or 1), x =(age, PR)
• Possible rules

d(age,PR) = I(age < 50 and PR < 10)

d(age,PR) = I{age + 8.7log(PR)− 60 > 0}

Goal, restated:
• Let D be the class of all possible regimes d
• Estimate dopt ∈ D such that, if dopt were followed by all

patients in the population, it would lead to largest average
outcome (value ) among all regimes in D
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Potential Outcomes

Reminder: We can hypothesize potential outcomes
• Y ∗(1) = outcome that would be achieved if patient were to

receive 1; Y ∗(0) defined similarly
• E{Y ∗(1)} is the average outcome if all patients in the

population were to receive 1; and similarly for E{Y ∗(0)}
• We observe

Y = Y ∗(1)A + Y ∗(0)(1− A)
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Potential Outcomes

No unmeasured confounders: Assume that

Y ∗(0),Y ∗(1) ⊥⊥ A|X

• X contains all information used to assign treatments
• Automatically satisfied for data from a randomized trial
• Standard but unverifiable assumption for observational

studies
• Implies that

E{Y ∗(1)} = E [E{Y ∗(1)|X}]
= E [E{Y ∗(1)|X ,A = 1}]
= E{E(Y |X ,A = 1) }

and similarly for E{Y ∗(0)}
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Potential Outcomes

E{Y ∗(1)} = E{E(Y |X ,A = 1) }

Implication for estimating E{Y ∗(1)}: Similarly for E{Y ∗(0)}
• E(Y |X ,A) = Q(X ,A) is the regression of Y on X and A
• E(Y |X ,A) is unknown
• Posit a model Q(X ,A;β) for Q(X ,A)

• Estimate β based on observed data =⇒ β̂
(e.g., least squares)

• Estimator for E{Y ∗(1)}

n−1
n∑

i=1

Q(Xi ,1; β̂)
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Potential Outcomes

Potential outcome for a regime:
• For any d ∈ D, define Y ∗(d) to be the potential outcome

for a patient if s/he were given treatment according to
regime d

Y ∗(d) = Y ∗(1)d(X ) + Y ∗(0){1− d(X )}

• E{Y ∗(d)} is the average outcome for the population if all
patients were treated according to regime d

• That is, E{(Y ∗(d)} = V (d) is the value of regime d
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Value of a Regime

Y ∗(d) = Y ∗(1)d(X ) + Y ∗(0){1− d(X )}

Value of regime d: Using no unmeasured confounders

E{Y ∗(d)} = E [E{Y ∗(d)|X}]

= E
[
E{Y ∗(1)|X}d(X ) + E{Y ∗(0)|X}{1− d(X )}

]
= E

[
E(Y |X ,A = 1)d(X ) + E(Y |X ,A = 0){1− d(X )}

]
= E [Q(X ,1)d(X ) + Q(X ,0){1− d(X )}],

where E(Y |X ,A) = Q(X ,A)
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Estimating the Value of a Regime

E{Y ∗(d)} = E [Q(X ,1)d(X ) + Q(X ,0){1− d(X )}]

Again: E(Y |X ,A) is not known
• Posit a model Q(X ,A;β) for E(Y |X ,A)

• Estimate β based on observed data =⇒ β̂
(e.g., least squares)

• Estimate V (d) = E{Y ∗(d)} by

V̂ (d) = n−1
n∑

i=1

[Q(Xi ,1, β̂)d(Xi) + Q(Xi ,0, β̂){1− d(Xi)}]
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Optimal Regime

Reminder: dopt is a regime in D such that
• E{Y ∗(d)} ≤ E{Y ∗(dopt )} for all d ∈ D
• E{Y ∗(d)|X = x} ≤ E{Y ∗(dopt )|X = x} for all d ∈ D and

x ∈ X

Optimal regime:

dopt (x) = arg maxa={0,1} E{Y ∗(a)|X = x}

• Thus

dopt (x) = I[E{Y ∗(1)|X = x} > E{Y ∗(0)|X = x}]
= I{Q(x ,1) > Q(x ,0) }
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Estimating the Optimal Regime

“Regression estimator”:
• Estimate dopt by

d̂opt
REG(x) = I{Q(x ,1; β̂) > Q(x ,0; β̂) }

• Estimator for V (dopt ) = E{Y ∗(dopt )}

V̂REG(d̂opt
REG) = n−1

n∑
i=1

[
Q(X ,1i , β̂)d̂opt

REG(Xi)+Q(X ,0i , β̂){1−d̂opt
REG(Xi)}

]
Concern: Q(X ,A;β) may be misspecified , so d̂opt

REG could be
far from dopt
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Optimal Restricted Regime

Alternative perspective: Q(X ,A;β) defines a class of regimes

d(x , β) = I{Q(x ,1;β) > Q(x ,0;β)},

indexed by β, that may or may not contain dopt

• E.g., suppose in truth

E(Y |X ,A) = exp{1 + X1 + 2X2 + 3X1X2 + A(1− 2X1 + X2)}

=⇒ dopt (x) = I(x2 ≥ 2x1 − 1) (hyperplane)
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Optimal Restricted Regime

Posited model:

Q(X ,A;β) = β0 + β1X1 + β2X2 + A(β3 + β4X1 + β5X2)

• Regimes I{Q(x ,1;β) > Q(x ,0;β)} define a class of
regimes Dη with elements

I(x2 ≥ η1x1+η0) or I(x2 ≤ η1x1+η0), η0 = −β3/β5, η1 = −β4/β5

depending on the sign of β5

• Parameter η is defined as a function of β
• The optimal regime in this case is contained in Dη
• However, the estimated regime I{Q(x ,1; β̂) > Q(x ,0; β̂}

may not estimate the optimal regime within Dη if the
posited model is incorrect
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Optimal Restricted Regime

Suggests: Consider directly a restricted class of regimes Dη
with elements of form

d(x ; η) = dη(x) indexed by η

• Such regimes may be motivated by a regression model or
based on cost , feasibility in practice, interpretability; e.g.,

d(x ; η) = I(x1 < η0, x2 < η1)

• Dη may or may not contain dopt but is still of interest

• Optimal restricted regime dopt
η (x) = d(x ; ηopt ),

ηopt = arg maxη E{Y ∗(dη)}
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Estimating the Optimal Restricted Regime

Optimal restricted regime: dopt
η (x) = d(x ; ηopt ),

ηopt = arg maxη E{Y ∗(dη)} = arg maxη V (dη)

Approach:
• Directly estimate the value V (dη) = E{Y ∗(dη)} for any

fixed η =⇒ V̂ (dη)

• Estimate the optimal restricted regime by finding

η̂opt = arg maxηV̂ (dη) =⇒ d̂opt
η (x) = d(x ; η̂opt )

• We refer to this as a value search estimator for dopt
η
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Value Search Estimators

Required: A “good ” estimator for V (dη)

• Missing data analogy
• Let Cη denote η-regime consistency indicator

Cη = Ad(X ; η) + (1− A){1− d(X ; η)}

• “Full data ” are {X ,Y ∗(dη)}; “observed data ” are
(X ,Cη,CηY )

• =⇒ Only a subset of subjects have observed outcomes
under dη; the rest are missing
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Value Search Estimators

Cη = Ad(X ; η) + (1− A){1− d(X ; η)}

Propensity scores:
• π(X ) = pr(A = 1|X ) is the propensity score for treatment
• Randomized trial: π(X ) is known
• Observational study: Posit a model π(X ; γ) (e.g., logistic

regression) and fit using (Ai ,Xi), i = 1, . . . ,n =⇒ γ̂.
• Propensity of receiving treatment consistent with dη

πc(X ; η) = pr(Cη = 1|X ) = E(Cη|X )

= E [Ad(X ; η) + (1− A){1− d(X ; η)}|X ]

= π(X )d(X ; η) + {1− π(X )}{1− d(X ; η)}

• Write πc(X ; η, γ) with π(X ; γ)
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Value Search Estimators

Estimators for V (dη) = E{Y ∗(dη)}: For fixed η
• Inverse probability weighted estimator

V̂IPWE (dη) = n−1
n∑

i=1

Cη,iYi

πc(Xi ; η, γ̂)
.

• Consistent for V (dη) if π(X ; γ) (hence πc(X ; η, γ)) is correct
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Value Search Estimators

Consistency:

E
{

CηY
πc(X ; η)

}
= E

{
CηY ∗(dη)

πc(X ; η)

}
= E

[
E
{

CηY ∗(dη)

πc(X ; η)

∣∣∣∣Y ∗(dη),X
}]

= E
[

E{Cη|Y ∗(dη),X}Y ∗(dη)

πc(X ; η)

]
= E

[
E{Cη|X}Y ∗(dη)

πc(X ; η)

]
= E

{
πc(X ; η)Y ∗(dη)

πc(X ; η)

}
= E{Y ∗(dη)}
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Value Search Estimators

Estimators for V (dη) = E{Y ∗(dη)}: For fixed η
• Doubly robust augmented inverse probability weighted

estimator

V̂AIPWE (dη) = n−1
n∑

i=1

{
Cη,iYi

πc(Xi ; η, γ̂)
−

Cη,i − πc(Xi ; η, γ̂)

πc(Xi ; η, γ̂)
m(Xi ; η, β̂)

}
m(X ; η, β) = E{Y ∗(dη)|X} = Q(X ,1;β)d(X ; η)+Q(0,X ;β){1−d(X ; η)}

and Q(X ,A;β) is a model for E(Y |X ,A)

• Consistent if either π(X , γ) or Q(X ,A;β) is correct
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Augmented Estimator

Under MAR: Y ∗(dη)⊥⊥Cη|X

• If γ̂
p−→ γ∗ and β̂

p−→ β∗, this estimator
p−→

E
{

CηY
πc(X ; η, γ∗)

− Cη − πc(X ; η, γ∗)

πc(X ; η, γ∗)
m(X ; η, β∗)

}
= E

[
Y ∗(dη) +

{
Cη − πc(X ; η, γ∗)

πc(X ; η, γ∗)

}
{Y ∗(dη)−m(X ; η, β∗)}

]
= E{Y ∗(dη)}+ E

[{
Cη − πc(X ; η, γ∗)

πc(X ; η, γ∗)

}
{Y ∗(dη)−m(X ; η, β∗)}

]
• Hence the estimator is consistent if either

I π(X ; γ∗) = π(X )⇒ πc(X ; η, γ∗) = πc(X ; η)
(propensity correct)

I Q(X ,A;β∗) = Q(X ,A)⇒ m(X ; η, β∗) = m(X ; η)
(regression correct )

I Double robustness
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Value Search Estimators

Result: Estimators η̂opt for ηopt obtained by maximizing
V̂IPWE (dη) or V̂AIPWE (dη) in η

• Estimated optimal restricted regime d̂opt
η (x) = d(x ; η̂opt )

• Non-smooth functions of η; must use suitable optimization
techniques

• Estimators for V (dopt
η ) = E{Y ∗(dopt

η )}

V̂IPWE (d̂opt
η,IPWE ) or V̂AIPWE (d̂opt

η,AIPWE )

Can calculate standard errors
• Semiparametric theory : AIPWE is more efficient than

IPWE for estimating V (dη) = E{Y ∗(dη)}
• =⇒ Estimating regimes based on AIPWE should be

“better ”
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Empirical Studies

Extensive simulations: Qualitative conclusions
• Estimated optimal regime based on regression can achieve

the true E{Y ∗(dopt )} if Q(X ,A;β) is correctly specified
• But performs poorly when Q(X ,A;β) is misspecified
• Estimated regimes based on IPWE(η) are so-so even if

propensity model is correct
• Estimated regimes based on AIPWE(η) achieves the true

E{Y ∗(dopt )} if Q(X ,A;β) is correctly specified even if the
propensity model is misspecified

• And are much better than the regression estimator when
Q(X ,A;β) is misspecified
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Discussion

• Two approaches to estimation of optimal regimes for a
single decision point

• Regression methods – estimate an optimal regime based
on a posited regression model

• Value search methods – estimate an optimal treatment
regime within a specified class by maximizing the value

• Robustness to misspecification (AIPWE)
• Both methods may be extended to multiple decision points

(later)
• Next: Alternative classification perspective for single

decision
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Classification Methods

Generic classification situation:
• Z = outcome , class , label ; here, Z = {0, 1} (binary )
• X = vector of covariates, features taking values in X , the

feature space
• d is a classifier: d : X → {0, 1}
• D is a family of classifiers , e.g.,

I Hyperplanes of the form

I(η0 + η1X1 + η2X2 > 0)

I Rectangular regions of the form

I(X1 < a1) + I(X1 ≥ a1,X2 < a2)
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Classification Methods

Generic classification problem:
• Training set: (Xi ,Zi), i = 1, . . . ,n
• Find classifier d ∈ D that minimizes

I Classification error

n∑
i=1

{Zi − d(Xi )}2

I Weighted classification error

n∑
i=1

wi{Zi − d(Xi )}2
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Classification Methods

Approaches:
• This problem has been studied extensively by statisticians

and computer scientists
• Machine learning (supervised learning)
• Many methods and software are available
• Recursive partitioning (CART ): Rectangular regions
• Support vector machines: Hyperplanes, etc.
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Value Search Estimators, Revisited

Recall: Estimation of dη ∈ restricted class Dη

ηopt = arg maxηV (dη) = arg maxηE{Y ∗(dη)}

• Doubly robust AIPWE

V̂AIPWE (dη) = n−1
n∑

i=1

{
Cη,iYi

πc(Xi ; η, γ̂)
−

Cη,i − πc(Xi ; η, γ̂)

πc(Xi ; η, γ̂)
m(Xi ; η, β̂)

}

Cη,i = Aid(Xi ; η) + (1− Ai){1− d(Xi ; η)}
πc(Xi ; η, γ̂) = π(Xi ; γ̂)d(Xi ; η) + {1− π(Xi ; γ̂)}{1− d(Xi ; η)}
m(Xi ; η, β̂) = Q(Xi ,1; β̂)d(Xi ; η) + Q(Xi ,0, β̂){1− d(Xi ; η)}
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Value Search Estimators, Revisited

Algebra: V̂AIPWE (dη) may be rewritten as

n−1
n∑

i=1

d(Xi ; η)Ĉ(Xi) + terms not involving d

Ĉ(Xi) =

{
AiYi

π(Xi , γ̂)
− Ai − π(Xi , γ̂)

π(Xi ; γ̂)
Q(Xi ,1; β̂)

}
−

{
(1− Ai)Yi

1− π(Xi ; γ̂)
+

Ai − π(Xi ; γ̂)

1− π(Xi ; γ̂)
Q(Xi ,0; β̂)

}
,

• The contrast function is

E{Ĉ(Xi)|Xi} ≈ C(Xi) = Q(Xi ,1)−Q(Xi ,0)
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Contrast Function

E{Ĉ(Xi)|Xi} ≈ C(Xi) = Q(Xi ,1)−Q(Xi ,0)

Result: Ĉ(Xi) can be viewed as an estimator for the contrast
function for subject i
• If we knew the functions Q(Xi ,1) and Q(Xi ,0), we should

assign treatment

I{C(Xi) > 0} = I{Q(Xi ,1)−Q(Xi ,0) > 0}

to patient i .
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Classification Perspective

η̂opt = arg maxη
n∑

i=1

d(Xi ; η)Ĉ(Xi)

Further algebra: Another identity

d(Xi ; η)Ĉ(Xi) = −|Ĉ(Xi)|[I{Ĉ(Xi) > 0} − d(Xi ; η)]2

+ |Ĉ(Xi)|I{Ĉ(Xi) > 0}

• Hence

ˆηopt = arg minη
n∑

i=1

|Ĉ(Xi)| [I{Ĉ(Xi) > 0} − d(Xi ; η)]2,
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Classification Perspective

η̂opt = arg minη
n∑

i=1

|Ĉ(Xi)| [I{Ĉ(Xi) > 0} − d(Xi ; η)]2

Alternative formulation: This can be viewed as a weighted
classification problem with
• Label I{Ĉ(Xi) > 0}
• Classifier d(Xi ; η)

• Weight |Ĉ(Xi)|
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Discussion

• Estimation of optimal regime using “off-the-shelf ”
classification methods

• Estimated contrast functions constructed independently of
class of regimes

• Form of estimated optimal regime determined by
classification method

• Extension to multiple decisions ongoing
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Recap: Multiple Decision Points

In general: K decision points
• Baseline information x1, intermediate information xk

between decisions k − 1 and k , k = 2, . . . ,K
• Set of treatment options at decision k ak ∈ Ak

• Accrued information h1 = x1 ∈ H1,

hk = {x1,a1, x2,a2, . . . , xk−1,ak−1, xk} ∈ Hk , k = 2, . . . ,K

• Decision rules d1(h1),d2(h2), . . . ,dK (hK ), dk : Hk → Ak

• Dynamic treatment regime d = (d1,d2, . . . ,dK )

• D is the set of all possible K -decision regimes
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Recap: Optimal Regime for Multiple Decisions

Optimal regime: dopt ∈ D such that a patient with baseline
information X1 = x1 who receives all K treatments according to
dopt has expected outcome as large as possible

Potential outcomes under a regime d ∈ D:
• Baseline information X1, potential outcomes

X ∗2 (d1), . . . ,X ∗K (d̄K−1),Y ∗(d)

dopt satisfies:
• E{Y ∗(d)} ≤ E{Y ∗(dopt )} for all d ∈ D
• E{Y ∗(d)|X1 = x1} ≤ E{Y ∗(dopt )|X1 = x1} for all d ∈ D

and x1 ∈ H1
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Estimation of Optimal Treatment Regimes

K decisions: Data

(X1i ,A1i ,X2i ,A2i , . . . ,X(K−1)i ,A(K−1)i ,XKi ,AKi ,Yi), i = 1, . . . ,n

• X1i = Baseline information observed on subject i
• Xki , k = 2, . . . ,K = intermediate information between

decisions k − 1 and k on subject i
• Aki , k = 1, . . . ,K = observed treatment actually received

by subject i at decision k
• Hi = accrued information for subject i up to decision k

H1i = X1i , Hki = (X1i ,A1i , . . . ,A(k−1)i ,Xki), k = 2, . . . ,K

• Yi = observed outcome for subject i ; can be ascertained
after decision K or can be a function of X2i , . . . ,XKi
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Estimation of Optimal Treatment Regimes

Goal, restated: Estimate dopt satisfying
• E{Y ∗(d)} ≤ E{Y ∗(dopt )} for all d ∈ D
• E{Y ∗(d)|X1 = x1} ≤ E{Y ∗(dopt )|X1 = x1} for all d ∈ D

and x1 ∈ H1

Sequential randomization assumption: Data from
• A SMART
• A fabulous longitudinal observational study

For definiteness: Take K = 2 and Ak = {0,1}, k = 1,2
• Recall accrued information

H1i = X1i , H2i = (X1i ,A1i ,X2i)
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Characterizing the Optimal Regime

Optimal regime dopt : Follows from backward induction
(dynamic programming )
• Formally in terms of potential outcomes
• Sequential randomization assumption allows equivalent

expressions in terms of observed data (X1,A1,X2,A2,Y )
(as for single decision and no unmeasured confounders)
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Characterizing the Optimal Regime

Optimal regime dopt : Backward induction
• Decision 2: Q2(H2,A2) = E(Y |H2,A2)

dopt
2 (h2) = I{Q2(h2,1) > Q2(h2,0)} = arg maxa2={0,1}Q2(h2,a2)

Ỹ2(h2) = max{Q2(h2,0),Q2(h2,1)}

• Decision 1: Q1(H1,A1) = E{Ỹ2(H2)|H1,A1}

dopt
1 (h1) = I{Q1(h1,1) > Q1(h1,0)]} = arg maxa1={0,1}Q1(h1,a1)

Ỹ1(h1) = max{Q1(h1,0),Q1(h1,1)}

• dopt = (dopt
1 ,dopt

2 )

• The value of dopt is V (dopt ) = E{Ỹ1(H1)}
• Ỹ2(h2) and Ỹ1(h1) are referred to as the value functions
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Q-Learning

Q-learning: May be thought of as a generalization of the
regression estimator to sequential decisions
• Reinforcement learning in computer science
• Posit models for the “Q-functions ”
• Involves some complications not present in the single

decision case
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Q-Learning

Estimation of dopt :
• Decision 2: Posit and fit a model Q2(H2,A2;β2) by

regressing Y on H2,A2 (e.g., least squares) and estimate

d̂opt
Q,2(h2) = I{Q2(h2,1; β̂2) > Q2(h2,0; β̂2)}

• For each i , form “predicted value ”

̂̃Y 2i = Ỹ2i(H2i ; β̂2) = max{Q2(H2i ,0; β̂2),Q2(H2i ,1; β̂2)}

• Decision 1: Posit and fit a model Q1(H1,A1;β1) by

regressing ̂̃Y 2 on H1,A1 (e.g., least squares) and estimate

d̂opt
Q,1(h1) = I{Q1(h1,1; β̂1) > Q1(h1,0; β̂1)}

• Estimated regime d̂opt
Q = (d̂opt

Q,1, d̂
opt
Q,2)
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Q-Learning

Issues and challenges:
• Regardless, as in the single decision case, incorrect model

specification will impact quality of estimation of dopt

• Modeling at decisions K − 1, . . . ,1 challenging due to need
to model max

• More flexible models for Q-functions can be used
• Because of nonsmooth max operator, standard asymptotic

theory is invalid
• Considerable current research
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Value Search Methods

Generalization to K > 1:
• Consider directly a restricted class of regimes Dη with

elements dη = (dη,1, . . . ,dη,K ); at decision k

dη,k (hk ) = dk (hk ; ηk )

• Based on cost , feasibility , interpretability at each decision
• Optimal restricted regime dopt

η

ηopt = arg maxηE{Y ∗(dη)} = arg maxηV (dη)

• Estimator V̂ (dη) for fixed η; maximize in η to obtain η̂opt

• Required: A “good ” V̂ (dη)
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Value Search Methods

Extend missing data analogy to monotone dropout: K = 2
• “Full data ”

{X1,X ∗2 (dη),Y ∗(dη)}
• Define η-regime consistency indicator Cη

• Cη =∞: If a patient’s actual treatments A1,A2 are all
consistent with following dη, then

(X1,X2,Y ) = {X1,X ∗2 (dη),Y ∗(dη)}

• Cη = 2: If actual A1 is consistent with following dη but A2 is
not, then

(X1,X2) = {X1,X ∗2 (dη)}
but Y ∗(dη) is “missing ” (“dropout ” before decision 2)

• Cη = 1: If neither of A1,A2 is consistent with following dη,
both X ∗2 (dη),Y ∗(dη) are “missing ” (“dropout ” before
decision 1)

47/54 Dynamic Treatment Regimes



Value Search Methods

Propensity scores: At decision k = 1, . . . ,K

πk (Hk ) = pr(Ak = 1|Hk )

• Randomized trial (SMART): πk (hk ) is known
• Observational study: Posit and fit models πk (hk ; γk )

• Can express propensities of receiving treatment consistent
with dη through decision k in terms of πk (hk )

Result: Can develop IPWE and doubly-robust AIPWE
estimators for V (dη) in terms of Cη and πk (hk )
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Augmented Inverse Probability Weighted
Estimators

V̂AIPWE (dη)

=
n∑

i=1

(
I(Cη,i =∞)Yi∏K

k=1[πk (Hki)dη,k (Hki) + {1− πk (Hki)}{1− dη,k (Hki)}]

)
+ augmentation terms
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Value Search Methods

Issues and challenges:
• As for K = 1, is nonstandard optimization problem
• IPWE (leading term for AIPWE) involves only subjects with

Cη =∞ (consistent with following regime for all K
decisions )

• May become infeasible for K > 3
• Simulation evidence: Performance comparable to

Q-learning with correct models; AIPWE is robust to model
model misspecification while Q-learning is not
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Discussion

• Two classes of methods for estimation of optimal regimes
for multiple decision points

• Q- and A-learning (sequential regression methods) –
estimate an optimal regime based on sequential posited
regression models

• Potential for model misspecification is high
• Value search methods – robustness to misspecification
• Limitation to small K due to need for “regime consistency ”

51/54 Dynamic Treatment Regimes



References

Lunceford, J., Davidian, M., and Tsiatis, A. A. (2002).
Estimation of the survival distribution of treatment regimes in
two-stage randomization designs in clinical trials. Biometrics
58, 48–57.

Murphy, S. A. (2005). An experimental design for the
development of adaptive treatment strategies. Statistics in
Medicine 24, 1455–1481.

Schulte, P. J., Tsiatis, A. A., Laber, E. B., and Davidian, M.
(2014). Q- and A-learning methods for estimating optimal
dynamic treatment regimes. Statistical Science, in press.

Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013).
Robust estimation of optimal dynamic treatment regimes for
sequential treatment decisions. Biometrika 100, 681–694.

52/54 Dynamic Treatment Regimes



Closing Remarks

• Estimation of optimal treatment regimes is a wide open
area of research

• SMARTs are the “gold standard ” data source for
estimation of optimal regimes

• Design considerations for SMARTs?
• High-dimensional covariate information? Regression

model selection ?
• “Black box ” vs. restricted class of regimes?
• Inference ?
• Balancing multiple outcomes (e.g., efficacy vs. toxicity )?
• . . .
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