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BACKGROUND

I Frogs and other amphibians have been dying
off in large numbers since the 1980s because of a
deadly fungus called Batrachochytrium dendro-
batidis, also known as Bd.

I Dr. Roland Knapp has been studying the
amphibian declines for the past decade at Sierra
Nevada Aquatic Research Laboratory.

I He hiked thousands of miles and surveyed
hundreds of frog populations in Sequoia-Kings
Canyon National Park.

FROG DATA (2000-2011)

I It contains 309 frog
populations. Each was
followed up until in-
fection or being cen-
sored (10% censoring).

I The response is the
Bd infection time (i.e.
Bd arrival year− base-
line year).

I Main covariates:
bdwater: whether or
not Bd has been found
in the watershed.
bddistance: straight-
line distance to the n-
earest Bd location.

I Spatial dependence:
populations near each
other tend to become
infected at about the
same time.

OBJECTIVE

I T (s) : the random Bd infection time (i.e. sur-
vival time) at location s.

I {T (s)|s ∈ D},D ⊆ R2 : a spatial process.

I (T (s1), . . . , T (sn))′ : a realization.

I x(s) : a p× 1 vector of covariates.

I Goal: describe the association between x(s)
and T (s) while allowing for spatial dependence
and predict T (s0) given x(s0) at any new loca-
tion s0.

PROPORTIONAL HAZARD MODEL

Assume Ti|xi, i = 1, . . . , n independently dis-
tributed with hazard rate

λ(t|xi) = λ0(t) exp(x′iβ),

where λ0(t) is the baseline hazard of an individ-
ual with x = 0.

LI AND LIN (2006), JASA
Normal Transformation Model:

I Assume Ti|xi follows the proportional hazard
model with cdf Fxi , i = 1, . . . , n.

I Then T ∗i = Φ−1 {Fxi
(Ti)} ∼ N(0, 1), where

Φ(·) is the cdf of the standard normal variable.

I Assume T ∗ = (T ∗1 , . . . , T
∗
n) ∼ Nn(0,C), where

C is a covariance matrix defined by the Matern
correlation function.

FROG DATA ANALYSIS

Our Approach (LMPL = −277) Li&Lin (LMPL = −326)

Parameters Mean Median Std. dev. 95% HPD Interval Mean Median Std. dev. 95% HPD Interval
θ1 0.9937 0.9941 0.0029 (0.9879, 0.9988) 0.9909 0.9913 0.0040 (0.9829, 0.9981)
θ2 0.0866 0.0841 0.0211 (0.0493, 0.1297) 0.1217 0.1200 0.0204 (0.0842, 0.1638)
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Observations:
1. Based on LPML, our approach has much better
prediction ability than Li and Lin, 2006.
2. Based on the estimates of θ1 and θ2, the spatial
correlation is strong for this data set.

3. The proportional hazard assumption does not
hold since two curves are crossing.
4. The prediction map is very important to show
which area will get infection more quickly.

SIMULATION

Assume log T |x follows f(y|x) = 0.4N(3.5 + 0.5x, 12) + 0.6N(2.5− x, 0.52), θ1 = 0.98 and θ2 = 0.1.
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Mean Squared Prediction Error (MSPE): Ours = 0.269; Lin&Lin = 0.498; DeIorio = 1.325.

NONPROPORTIONAL HAZARD MODEL

De Iorio et al. (2009) assume Yi = log Ti given xi

independently follows a mixture model

Fxi(y|G) =

∫
Φ

(
y − x′iβ

σ

)
dG{β, σ2},

where G follows a Dirichlet Process (DP) prior.

A SPATIAL COPULA EXTENSION

I Assume Yi = log Ti given xi follows follows
the above mixture model.

I Model the joint distribution of (Y1, . . . , Yn)′ by

F (t1, . . . , tn|G) = C(Fx1(t1|G), . . . , Fxn(tn|G);θ),

where C(u1, . . . , un;θ) is a spatial copula with
parameter θ, capturing spatial dependence .

I Define Gaussian copula as

C(u1, . . . , un;C) = Φn

(
Φ−1(u1), . . . ,Φ−1(un);C

)
,

where Φn be the joint cdf of Nn(0,C).

I Define spatial Gaussian copula by assuming
C = [C(si, sj ;θ)]ni,j=1 with

C(si, sj ;θ) = θ1ρ(si, sj) + (1− θ1)I(si = sj),

where θ1 ∈ [0, 1] measures a local maximum cor-
relation and ρ(si, sj) = exp {−θ2||si − sj ||} is the
correlation function.

MCMC

I All parameters involved in G are updated
based on a modification of the blocked Gibbs
sampler (Ishwaran and James, JASA, 2001): M-H
samplers with independent proposals.

I Use Delayed Rejection (Tierney and Mira,
1999) if low acceptance rate occurs in M-H step.

I The correlation parameters θ are updated us-
ing adaptive M-H (Haario et al., Bernoulli, 2001).

I For large n, the inversion of the n×nmatrixC
can be substantially speeded up using a full scale
approximation (Sang and Huang, JRSSB, 2012).

A FUTURE DIRECTION

I Create a R package named “spBayesSurv”.

I Consider other non-Gaussian spatial copulas.

I Goodness-of-fit testing for spatial copulas.

I Extend to categorial spatial data.
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