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The Problem

Assume that we have M groups of mean-zero, longitudinal data.
Groups may be defined by differing treatments and/or baseline
covariates.

Ymi ∼ NT (0,Σm) , i = 1, . . . , nm; m = 1, . . . ,M

How can we model/estimate the set of covariance matrices
{Σ1, . . . ,ΣM}?

Assume Equality → If untrue, this can lead to invalid
inference of mean effects.

Model Each Separately → Inefficient if there is common
structure, especially if nm are small or T is large.

We want a prior for {Σ1, . . . ,ΣM} that finds the middle ground
between the two by sharing information across groups to improve
estimation efficiency.
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The Modified Cholesky Parametrization

We use the modified Cholesky parametrization for each Σm to
avoid the positive-definite constraint.

Σ−1
m = TmGmT>m

Tm is an upper-triangular matrix with 1’s on the diagonal and
T (T − 1)/2 unconstrained elements −φm;jt (j < t) called the
generalized autoregressive parameters (GARPs).

Gm = diag{γ−1
m1, . . . , γ

−1
mT}, where γmt > 0 are the T

innovation variances (IVs).

The GARPs and IVs are interpreted as regression coefficients and
variances of the sequential regressions.

(Pourahmadi, 1999 and 2000)
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The Modified Cholesky Parametrization, (2)

For Y ∼ NT

(
0,Σ = (TmGmT>m)−1

)
, we can factor the

distribution as

f (Y1) f (Y2|y1) f (Y3|y1, y2) · · · f (YT |y1, . . . , yT−1).

The t-th sequential distribution is

Yt |y1, . . . , yt−1 ∼ N

∑
j<t

φm;jtyj , γmt

 .

Normal and inverse gamma are conjugate distributions for the
GARPs and IVs.
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The Goal

Our goal is to develop a prior distribution for the sets of GARPs
and IVs that borrows strength across the M groups and encourages
a lower-dimensional structure on Σm that is natural for
longitudinal data.

We do this by allowing the sequential distributions to be equal
across groups, that is,

fm(Yt |y1, . . . , yt−1) = fm′(Yt |y1, . . . , yt−1)

by partitioning the group labels for each t. Hence, φm;t = φm′;t

(φm;t = (φm;1t , . . . , φm;t−1,t)
>) and γmt = γm′t . We also favor a

sparse structure for T by some shrinking the GARPs toward zero.
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Covariance Partition Prior

Notation:

M = {1, . . . ,M} is the collection of group labels.

P = {S1, . . . ,Sd} is a partition of M with degree d .

The sets S1, . . . ,Sd are non-empty and mutually exclusive,
with M as the union.

Ω is the collection of all possible partitions P.

The M-th Bell Number BM is the cardinality of Ω.

The groups in the same set of Pt = {S1t , . . . ,Sdt t} have the same
dependence parameters for the t-th sequential distribution
f (Yt |y1, . . . , yt−1).

We need to specify a joint prior distribution π(P1,P2, . . . ,PT ) for
the set of partitions that will vary smoothly in time.
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Markov Chain of Partitions

To that end, we introduce a Markov chain on partitions.

Markov Property: pr(Pt+1|P1, . . . ,Pt) = pr(Pt+1|Pt)
Distance between partitions:

d(P1,P2) = 2|P1 ∩ P2| − |P1| − |P2|

P1∩P2 = {S : S 6= ∅; S = S1∩S2 for some S1 ∈ P1,S2 ∈ P2}

This distance is the minimum number of merges and splits of
the sets of P1 to obtain P2 (Day, 1981).

Closeness between partitions:

cq(P1,P2) =
1

1 + {d(P1,P2)}q
,

q ≥ 0 is a smoothness parameter.
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Markov Chain of Partitions, (2)

Attractiveness of partition P:

aq(P) =
1

BM

∑
P ′∈Ω

cq(P,P ′)

Transition probability:

pr(Pt+1|Pt) =
cq(Pt ,Pt+1)

BM aq(Pt)

The stationary probability is proportional to the attractiveness.

pr(Pt) =
aq(Pt)
BM Aq

, (Aq = B−1
M

∑
P∈Ω

aq(P)).

We specify the distribution of the initial partition P1 to be the
stationary probability, so that the marginal distribution of all
partitions is the set of stationary probabilities.
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Markov Chain of Partitions, (3)

Distribution of the partition process:

π(P1, . . . ,PT ) = pr(P1)
T∏
t=2

pr(Pt |Pt−1)

=
aq(P1)

BM Aq

T∏
t=2

cq(Pt−1,Pt)
BM aq(Pt−1)
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What about q?

Clearly, the prior depends on the choice of smoothing parameter
q ≥ 0.

1 q = 0: c0(P,P ′) = 1/2 since d0 = 1. Hence,
pr(Pt+1|Pt) = 1/BM . This is the independent-uniforms prior.

2 q large: cq(P,P ′) ≈ 0 if d(P,P ′) > 1. Hence, moves that
require more than one merge or split are practically impossible.

We choose q to be a uniform random variable with discrete support

Q = {0, 0.025, 0.05, 0.075, . . . , Q̄},

where Q̄ is some maximum value of Q such that aQ̄(P) ≈ a∞(P).
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Prior on Cholesky Parameters

For each set Sit ∈ Pt , we associate the parameters (φ̃it , γ̃it) so
that (φm;t , γmt) = (φ̃it , γ̃it) for all m ∈ Sit .

In addition to finding equalities across groups, we seek sparsity in
the Tm matrices. Under multivariate normality, φm;jt = 0 implies
Yj and Yt are independent given Y1, . . . ,Yt−1.

We will incorporate a shrinkage prior on φm;jt that shrinks the
regression coefficient toward zero with more aggressive shrinking
for the higher lag |t − j | GARPs by adapting the Bayesian lasso
(Park and Casella, 2008).
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Prior Distributions

Conditional on the partitions, the Cholesky parameters for set Sit
are drawn as follows.

δijt |Pt ∼ Exp

(
1

2
ξ2

0 |t − j |2
)

(j = 1, . . . , t − 1),

γ̃it | Pt ∼ InvGamma(λ1, λ2),

φ̃it | γ̃it ,∆it ,Pt ∼ Nt−1(0, γ̃it∆it),

∆it = diag (δi1t , . . . , δi ,t−1,t)

As |t − j | increases, δijt is more concentrated near zero, so φ̃i ;jt is
aggressively shrunk toward zero. ξ2

0 controls the overall rate of
shrinkage.

Priors for hyperparameters: ξ2
0 , λ1, λ2 ∼ ind. Gamma(1, 1)
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Sampling Strategy

Inference under the Covariance Partition Priors requires an MCMC
posterior sample. Let Ct = {(φmt , γmt)}Mm=1, ∆t = {∆it}dti=1,
H = {q, ξ2

0 , λ1, λ2}, and Y be the data.

Updating the parameters for the t-th sequential distributions
requires sampling from[

Pt ,Ct ,∆t | P(−t),C(−t),∆(−t),H,Y
]

= [Pt ,∆t | Pt−1,Pt+1,H,Y] × [Ct | Pt ,∆t ,H,Y]

After we draw (Pt ,∆t) from the first conditional, sampling from

[Ct | Pt ,∆t ,H,Y] =
∏dt

i=1

[
φ̃it , γ̃it |Sit ,∆it ,H,Y

]
can be done

conjugately from the InvGamma and Normal distributions.
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Sample Partition and Shrinkage: [Pt ,∆t | Pt−1,Pt+1,H ,Y]

Propose a candidate partition P?
t = {S?

1t , . . . ,S
?
d?
t t
} using a

mixture of biased random walk (relocate one group) and
split/merge steps.

Propose new shrinkage factors ∆?
t ∼ g(·|Pt ,P?

t ), where g is
the conditional distribution for ∆ given a pooled estimator for
the GARPs/IV.
Calculate the marginal likelihood L(Ymi ,m ∈ Sit |∆it) of the
all sets:∫ { ∏

m∈Sit

nm∏
i=1

f (Ymit |Ymi1, . . . ,Ymi,t−1; φ̃, γ̃)

}
π(φ̃|γ̃,∆it)π(γ̃)dφ̃ dγ̃.

Accept the move from (Pt ,∆t) to (P?
t ,∆

?
t ) with

Metropolis-Hastings probability min{1, α}, where α is

pr(P?
t |Pt−1) pr(Pt+1|P?

t )

pr(Pt |Pt−1) pr(Pt+1|Pt)

∏d?t
i=1 L(Ymi ,m ∈ S?

it |∆?
it)π(∆?

it)∏dt
i=1 L(Ymi ,m ∈ Sit |∆it)π(∆it)

pr(P?
t → Pt)

∏dt
i=1 g(∆it |Pt ,P?

t )

pr(Pt → P?
t )

∏d?t
i=1 g(∆?

it |Pt ,P?
t )
.

Jeremy Gaskins University of Louisville Covariance Partition Priors 18



Partition Prior Cholesky Prior Sampling Strategy Data Example Conclusions

Additional Sampling Comments

We also develop a step that jointly updates a neighborhood of
partitions Pt , . . . ,Pt+k along with their shrinkage factors.

The hyperparameter ξ2
0 is sampled conjugately and λ1, λ2

through slice sampling (Neal, 2003).

q is updated through a Metropolis-Hasting step that requires
aq(Pt) and aq?(Pt). Since Q is discrete, we compute aq(P)
for all q ∈ Q and P ∈ Ω before hand and look it up during
each MH step.

Because ∆it is only updated if changes to the set Sit ∈ Pt are
accepted in the partition update move, we include an
additional step that conjugately samples the shrinkage factors
(inverse Gaussian) to speed mixing.
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Depression Study Data

We consider the effectiveness of our covariance partition priors on
modeling a data set from a T = 17 week depression study (Thase
et al., 1997). The study wanted to consider whether
pharmocotheraphy was more effective in reducing depression than
psychotherapy alone.

Previous analyses have shown that severity of baseline depression
symptoms influences the rate and variability of improvement.

We analyze the data with M = 8 groups defined by drug treatment
or control, the initial severity (high or moderate), and gender.
Sample sizes range from 28 to 73 patients, with group 8 at 193
patients.

We will use a quadratic mean function with group-specific
regression coefficients with a flat prior. We assume all missing data
is ignorable.
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Comparison Methods and Model Selection

Priors on partitions:

Covariance partition prior: π(P1, . . . ,PT ) with random q

Independent-uniforms prior: q = 0

Group pooling: Pt = Ppool = {M} for all t

Assumes a common covariance matrix for all groups

Group independence: Pt = Pind = { {1}, · · · , {M} } for all t

Assumes an independent covariance matrix for each group

Additionally, we consider both the Cholesky shrinkage model and a
non-sparse version with ∆ = σ2I with σ2 ∼ InvGamma(0.1, 0.1).

We compare the model fits between priors using the Deviance
Information Criteria (dic) (Spiegelhalter et al., 2002).
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Model Selection

dic = Dev + 2pD

Dev = Dev(µ̂, Σ̂−1 | yobs) = −2loglik(µ̂, Σ̂−1 | yobs)

pD = Epost{Dev(µ,Σ−1 | yobs)} − Dev

Partition Prior Cholesky Prior Dev pD dic

cov. partition prior shrinkage 39,020 513 40,046
cov. partition prior non-shrink 38,987 544 40,074

indep.-uniforms prior shrinkage 38,934 595 40,123
indep.-uniforms prior non-shrink 38,884 643 40,170

Pt = Pind shrinkage 38,658 814 40,286
Pt = Ppool non-shrink 39,879 213 40,306
Pt = Ppool shrinkage 39,908 200 40,309
Pt = Pind non-shrink 38,549 912 40,374
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Posterior Partition Structure
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Figure: The posterior probability that m1 and m2 are in the same set of
the partition Pt , that is, pr(∃Sit ∈ Pt : {m1,m2} ∈ Sit).
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Posterior Partition Structure, (2)
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Figure: The posterior probability that m1 and m2 are in the same set of
the partition Pt , that is, pr(∃Sit ∈ Pt : {m1,m2} ∈ Sit).
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Posterior Partition Structure, (3)
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Figure: The posterior probability that m1 and m2 are in the same set of
the partition Pt , that is, pr(∃Sit ∈ Pt : {m1,m2} ∈ Sit).
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Conclusions

Covariance Partition Priors provide a new approach to
parsimoniously estimating multiple longitudinal covariance
matrices.

They consider a large model space by stochastically searching
for common structure on the sequential regressions across
groups by introducing a Markov chain on partitions.

Within groups (or sets of a partition), the sequential
distributions have sparse structure due to a shrinkage prior.

Empirical evidence shows good performance of our
methodology in both simulation (not shown) and real data
situations.

The posterior partition structures may be interpretable and
provide new insight to practitioners and subject-matter
experts.
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