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BACKGROUND
Group testing, where individuals are initially

tested in pools, is often used to screen a large
number of individuals for infectious diseases.

Triggered by the development of assays that
detect multiple infections, large-scale screen-
ing programs now involve testing individuals
in pools for multiple infections simultaneously.
Tebbs et al. (2013) have recently evaluated the
performance of a two-stage hierarchical algo-
rithm that is used to screen for chlamydia and
gonorrhea as part of the Infertility Prevention
Project (IPP) in the US.

Our interest is to generalize this work (two
infections) to accommodate a larger number of
stages.

1. We use Markov chain framework to derive
operating characteristics.

2. We use EM algorithm to estimate the popu-
lation prevalence.

CONTRIBUTION
1. We offer compelling evidence that higher-
stage algorithm can provide large cost savings,
especially when disease probabilities are low.

2. Higher-stage algorithm can provide preva-
lence estimates that are as efficient as those from
the two-stage algorithm in Tebbs et al. (2013).

TESTING ALGORITHM
An example of four-stage algorithm with

master pool size n1 = 12, Gs,im denotes the ith
pool at the sth stage of mth master pool.
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NOTATION AND ASSUMPTIONS
NOTATION:

1. ns: pool size at sth stage, for s = 1, . . . , S.

2. Ỹljm = 1: true status of jth infection for lth
individual in mth master pool, where l =
1, . . . , n1, m = 1, . . . ,M and j = 1, 2.

ASSUMPTIONS:

1. All individual specimens are i.i.d.

2. Sensitivity (Se:j) and specificity (Sp:j) of the
assay are known and do not depend on the
size of the pool being tested.

3. If the true statuses are given, the test re-
sponses are mutually independent.

EXPECTED NUMBER OF TESTS (EFFICIENCY)
The true status of the master pool transits to the true status of Gs,im is a finite space time-

inhomogeneous Markov chain, with states Ω = {00, 01, 10, 11} and each stage is considered to be a
step. We derive the expected number of tests needed to decode all individuals in mth master pool with
an S−stage algorithm:
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where M denotes the probability distribution of
the starting state (true status of the master pool),
P is the classification probability matrix that a
pool with certain true status being tested posi-
tive for at least one infection, J4 = (1, 1, 1, 1)′,
π(0) = P−1 and the stage-dependent transition
matrix π(s) has the form below, where column la-
bel denotes the true status of the parent pool and
the row labels denote the true status of the sub-

pool:

π(s) =



(1, 1) (1, 0) (0, 1) (0, 0)

(1, 1) π
(s)
11 π

(s)
12 π

(s)
13 π

(s)
14

(1, 0) 0 π
(s)
22 0 π

(s)
24

(0, 1) 0 0 π
(s)
33 π

(s)
34

(0, 0) 0 0 0 1


Remark: all probabilities in above matrix are derived in
closed-form.

OPTIMAL GROUPING STRATEGY
With a closed-form expression available for

efficiency, we are able to choose the optimal num-
ber of stages S and optimal master pool size n∗1
for a specific pool-splitting strategy (halving).

• For a given stage S, choose the optimal
master pool size n∗1 such that n−11 E(T

(S)
m )

is minimized (expected number of tests per-
individual).

• Choose the number of stage S that pro-
duces the smallest expected number of tests
per-individual.

OPT-STAGE DETERMINATION
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The optimal number of stage for different val-
ues of η1 and η2, where the correlation ρ =
corr(Ỹl1m, Ỹl1m) is set to be 0.25, η1 = P (Ỹl1m =

1) = p10 + p11 and η2 = P (Ỹl2m = 1) = p01 + p11.
Values of (η1, η2)′ in the white regions are not
possible.

CLASSIFICATION ACCURACY
Pooling sensitivity PSe:j (pooling specificity

PSp:j) for the jth infection is the probability an
individual is classified as positive (negative) for
the jth infection given that the individual is truly
positive (negative). They are derived in the same
manner of efficiency using Markov chain frame-
work.

ESTIMATION
We generalize the MCEM algorithm proposed

by Tebbs et al. (2013) to estimate the prevalence
ϑ = (p00, p10, p01)′ by treating the individual true
statuses Ỹljm as "missing data". The variance-
covariance matrix estimate are obtained using
the missing information principle and Louis’s
method (1982).

REAL DATA: CLASSIFICATION
To illustrate the potential benefits of the

hierarchical algorithm, we use the 16440 swab
specimens collected by Nebraska as part of
the IPP in 2009. The optimal grouping strat-
egy are determined by the "training data" in 2008.

Male Female
C G C G

N 1910 14530

T̄ (n∗1)
2-stage 1608.8 (3) 7709.6 (4)
3-stage 1715.8 (6) 7120.4 (6)
4-stage 1827.8 (12) 7091.3 (12)

PSe

2-stage 0.931 0.986 0.894 0.988
3-stage 0.908 0.984 0.849 0.985
4-stage 0.895 0.982 0.812 0.982

PSp

2-stage 0.990 0.990 0.994 0.996
3-stage 0.990 0.990 0.997 0.998
4-stage 0.990 0.990 0.997 0.998

REAL DATA: ESTIMATION

2-stage 3-stage 4-stage
Stratum Prevalence Estimate SE Estimate SE Estimate SE

Male Swab
(N = 1910)

p00 0.791 0.0099 0.791 0.0099 0.790 0.0101
p10 0.140 0.0085 0.139 0.0085 0.139 0.0088
p01 0.052 0.0053 0.052 0.0053 0.053 0.0053
p11 0.017 0.0032 0.017 0.0031 0.017 0.0031

Female Swab
(N = 14530)

p00 0.924 0.0024 0.924 0.0024 0.924 0.0024
p10 0.063 0.0022 0.063 0.0022 0.063 0.0022
p01 0.007 0.0007 0.007 0.0007 0.007 0.0007
p11 0.006 0.0007 0.006 0.0006 0.006 0.0006


