Statistical Shape Analysis on Elastic Surfaces using Numerical Inversion of SRNFs Qian Xie¹, Ian Jermyn², Sebastian Kurtek³, and Anuj Srivastava¹

¹Florida State University, ²Durham University, ³Ohio State University

$$_{\overline{2}}$$
, where $n(s) = f_u(s) \times f_v(s)$.

$$\neq \left\| (f_1, \gamma) - (f_2, \gamma) \right\|$$

$$= \|(q_1, \gamma) - (q_2, \gamma)\|$$

$$Q \xrightarrow{L^{2}} q \xrightarrow{Q_{*,f}(v_{1})} Q_{*,f}(v_{2}) \xrightarrow{Q_{*,f}(v_{2})} < Q_{*,f}(v_{1}), Q_{*,f}(v_{2}) >$$

$$\frac{(s)}{D}ds + \int_D \left\langle \delta \tilde{n}_1(s), \delta \tilde{n}_2(s) \right\rangle r(s)ds$$

Numerical Inversion by Optimization

> The energy function

$$E(f;q) = \|Q(f) - q\|_2^2$$

 \succ Given an SRNF, q_o , the original shape f_o s.t. $Q(f_o) = q_o$ is estimated as

$$f^* = argmin_{f \in F} E(f; q_o)$$

Gradient descent

$$\nabla E(f;q) = \sum_{b \in B} \nabla_b E(f;q_o) \cdot$$

Examples of Spherical Harmonic Basis

Simplified Calculation

- > Simplified analysis
 - Geodesic computation (deformation)
- Mean, PCA
- Random sampling

Computing Mean

Previous

Algorithm 1 Let μ_f^0 be an initial estimate. Set j = 0.

- 1. Register f_1, \ldots, f_n to μ_f^j .
- 2. For each $i = 1, \ldots, n$, construct a geodesic to connect f_i to μ_f^j and evaluate $v_i = \exp_{u^j}^{-1}(q_i)$.
- 3. Compute the average direction $\bar{v} =$ $\frac{1}{n}\sum_{i=1}^{n}v_i.$
- 4. If $\|\bar{v}\|$ is small, stop. Else, update $\mu_f^{j+1} = \exp_{\mu_s^j}(\epsilon \bar{v})$ by shooting a geodesic, $\epsilon_i 0$, small.
- 5. Set j = j + 1 and return to Step 1.

n geodesics per iteration

Proposed

Algorithm 2 Let $\bar{q} = Q(\mu_f^0)$ with μ_f^0 as an initial estimate. Set j = 0.

- 1. Register $Q(f_1), \ldots, Q(f_n)$ to \bar{q} . 2. Update the average \bar{q} = $\frac{1}{n}\sum_{i=1}^{n}q_i.$
- 3. If change in $\|\bar{q}\|$ is small, stop. Else, set j = j + 1 and return to Step 1.

Find μ_f by <u>inversion</u> s.t. $Q(\mu_f) = \bar{q}$.

1 inversion

REFERENCES

- Q. Xie, I. Jermyn, S. Kurtek, A. Srivastava. Numerical inversion of SRNFs for efficient elastic shape analysis of star-shaped objects. Submitted to ECCV 2014.
- Q. Xie, S. Kurtek, H. Le, and A. Srivastava. Parallel transport of deformations in shape
- space of elastic surfaces. ICCV 2013.
- I.H. Jermyn, S. Kurtek, E. Klassen, and A. Srivastava. Elastic shape matching of parameterized surfaces using square root normal fields. ECCV, 5(14):805–817, 2012.
- S. Kurtek, E. Klassen, J.C. Gore, Z. Ding and A. Srivastava. Elastic Geodesic Paths in Shape Space of Parameterized Surfaces. PAMI, 34(9):1717-1730, 2012.

