

Statistical Shape Analysis on Elastic Surfaces using Numerical Inversion of SRNFs

INTRODUCTION

> Goal: Many applications concern with capturing variability within and across shape classes
Main focus is on statistical shape analysis in addition to comparing shapes

Shapes As Equivalence Classes
> Shape: geometrical information after modding out some desired invariances

Surfaces with the same shape: $f_{1} \sim f_{2}$
Shape Spaces Are Non-Euclidean
$>$ Space of shapes, $S=\left\{[f] \mid f \in L^{2}\right\}$
> Shape spaces are non-Euclidean

> Generally, no closed form for geodesics

A 'straight line' in the shape space

SRNF of Surfaces

Definition. Given a spherical parameterized closed surfaces, $f: S^{2} \rightarrow R^{3}$, its Square Root Normal Field (SRNF) is a mapping $f \mapsto Q(f)$, such that for all $s \in S^{2}$,
$Q(f)(s)=\frac{n(s)}{|n(s)|^{1 / 2}}$, where $n(s)=f_{u}(s) \times f_{v}(s)$.

Advantages of SRNF

$>$ The L^{2} metric on F does not preserve distance,

$$
\left\|f_{1}-f_{2}\right\| \neq\left\|\left(f_{1}, \gamma\right)-\left(f_{2}, \gamma\right)\right\|
$$

> The shape-invariant variables act on SRNFs by isometries,

$$
\left\|q_{1}-q_{2}\right\|=\left\|\left(q_{1}, \gamma\right)-\left(q_{2}, \gamma\right)\right\|
$$

> The elastic metric becomes L^{2} on SRNFs

> The elastic metric is physically interpretable

$$
\begin{gathered}
\frac{1}{4} \int_{D} \frac{\delta r_{1}(s) \delta r_{2}(s)}{r(s)} d s+\int_{D}\left\langle\delta \tilde{n}_{1}(s), \delta \tilde{n}_{2}(s)\right\rangle r(s) d s \\
\text { Patch area } \quad \text { Normal direction }
\end{gathered}
$$

Proposed Framework
$>$ In the absence of invertibility, some of the advantages of the SRNF are lost
Previous Calculation
Proposed Calculation

Numerical Inversion by Optimization

$>$ The energy function

$$
E(f ; q)=\|Q(f)-q\|_{2}^{2}
$$

$>$ Given an SRNF, q_{o}, the original shape f_{o} s.t. $Q\left(f_{o}\right)=q_{o}$ is estimated as

$$
f^{*}=\operatorname{argmin}_{f \in F} E\left(f ; q_{o}\right)
$$

> Gradient descent

$$
\nabla E(f ; q)=\sum_{b \in B} \nabla_{b} E\left(f ; q_{o}\right) \cdot b
$$

Examples of Spherical Harmonic Basis Simplified Calculation
> Simplified analysis

- Geodesic computation (deformation)
- Mean, PCA
- Random sampling

Approximated Inversion Map

$>$ Given q_{o}, find f^{*} to approximate the ground truth f_{o}, s.t. $Q\left(f_{o}\right)=q_{o}$.

Statistical Analysis

$>$ Given a sample of observed surfaces f_{1}, \ldots, f_{n}. Estimate the mean shape and principal directions of variation

Principal Directions Random Samples

$\mathrm{P}_{\mathrm{PD} 1} \mathrm{P}_{\mathrm{PD} 2}$

ADHD Classification
> Using shapes of subcortical structures in human brain to detect and quantify presence of the attention deficit hyperactivity disorder (ADHD)
> 19 with ADHD and 15 non-ADHD
> Gaussian classifier on principal components
Method SRNF Gauss SRM Gaus SRM NN Harmonic ICP SPHARM PDM

L. Caudate	67.7		41.2	64.7	32.4	${ }_{61.8}$
Pallidus	85.3	88.2	76.5	79.4	67.7	1
Sumen	94.1	82.4	82.4	70.6	61.8	
L. Thalamus	67.7		58.8	67.7	35.5	. 9
R. Caudate	55.9		50.0	44.1	1.0	
	76.5	67.6	61.8	67.7	5.9	2.9
	67.7	82.4	67.7	55.9	7.2	55.9
That	67.7		58.8	52.9		64.7

