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L Motivation

Evolution of subclonal mutations in Chronic Lymphocytic
Leukemia (Landau et al. Cell 2013)
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Evolution of subclonal mutations in Chronic Lymphocytic
Leukemia (Landau et al. Cell 2013)
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Statistical question: how do we identify subclonal mutations in the
DNA sequencing data from tumor samples?
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L Methods

PyClone, Nature Methods 2014

The probability p of a read containing variant allele with mutation
state ¢ = (gn, gr, gv) and cellular prevalence ¢ is given by:

(Y, ¢, 1) %u(aw) + wmgm + %M(gv)
VA =

(1 —=t)e(gn) + (1 — ¢)c(gr) + téc(gv)
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The cellular prevalence ¢ cannot be deconvoluted into subclonal

fractions, unless under stringent assumptions of mutational
evolution.
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Lee et al. and Xu et al. 2014

Straightforward modeling of the fraction of cell clone ¢ for sample

t using wy,: c

Pst = wWtoPo + E WtcZsc
Celltype
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LSul:nclunal mutations

L Methods

Lee et al. and Xu et al. 2014

Straightforward modeling of the fraction of cell clone ¢ for sample

t using wy,: c

Pst = wWtoPo + Z WtcZsc

There is no genotype estimation. The interpretation of wy is
therefore convoluted with one fixed type of mutation genotype,
e.g. pairs of haplotypes, or extend z,. to be catogorical: (0,1,2)
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LSubclcmal mutations

L Discussion

Summary

m Clonal evolution is a key feature of cancer progression and
relapse.

m ldentification of subclonal mutations in cancer studies consists
of

m Estimating total number of subclones and their mixing
proportions
m Finding mutations within each cellular subclone
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Distinct compartments and changing proportions in tumor

samples
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L Stromal expression

L Motivation

Issue of tumor heterogeneity in gene expression

Traditional gene expression (GE) profiling

m True tumor cell gene expressions are masked by stromal cell
gene expressions

Gene expression, Stromal cell fraction: 45%

Normal
o | Observed Tumor
- —— Pure Tumor
o
-
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o
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Previous work _
Gene expression deconvolution

m Experimental: Laser-capture microdissection (LCM, 1996)
m In silico: AX=DB for each mixed sample,

where A is a matrix pure cell expressions, X is a vector of
proportions, B is the observed heterogeneous expression data
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Previous work _
Gene expression deconvolution

m Experimental: Laser-capture microdissection (LCM, 1996)
m In silico: AX=DB for each mixed sample,

where A is a matrix pure cell expressions, X is a vector of
proportions, B is the observed heterogeneous expression data

Linear assumption

For gene g and sample ¢, 7; is an unknown cell fraction for sample ¢
}/ig = 7TiT:ig + (1 - 7I'i)]\[ig-

where T;, represents tumoral expression and N;, represents
stromal expression.
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L Stromal expression

L Motivation

Challenges with gene expression deconvolution

m Linearity assumption holds better with raw measured data
(Liu and zhong, Nature Methods 2011)

m There is need for more practical way to jointly estimate the
mean of A across samples and X.

m Estimating individual expression A is needed for clinical
profiling.
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L Stromal expression
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GSE19830 data with known proportions

Using log-transformed data, Linearity does not hold
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L Stromal expression

L Motivation

GSE19830 data with known proportions

Using raw-measured data, linearity holds
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Clinical impact — deconvolved individual gene expressions

Color Key

-;‘ 3 Lung vs 12 Mixed vs 12 Est. Brain vs 3 Brain
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Related concepts

Matched versus unmatched samples

m Yig = (1—m)Nig+mTiyy => mi = (Yig—Nig)/(Tig— Nig),
—Applies to sample-specific and gene-specific Y's and N's
(matched design).

m In practice, we often need to deconvolve for unmatched
samples
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L Motivation

Related concepts

Matched versus unmatched samples

m Yig = (1—m)Nig+mTiyy => mi = (Yig—Nig)/(Tig— Nig),
—Applies to sample-specific and gene-specific Y's and N's
(matched design).

m In practice, we often need to deconvolve for unmatched
samples

Reference genes

m Genes with known expression profiles for both tumor and
normal samples.

m Available methods require knowledge of reference genes for
deconvolution. What can we do when no reference genes are
available?
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L Stromal expression

L Motivation

Goals

Using raw-measured data, we develop a general framework that

m Estimates unobserved cell-type proportions in heterogeneous
samples with/without knowledge of reference genes

m Reconstitute pure normal/tumor gene expressions for
matched /unmatched individual samples
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L Stromal expression

L Methods

Ahn et al. Bioinformatics 2013

Assumption

For gene g and sample 4, 7; is an unknown cell fraction for sample ¢

Y;g = 7T1‘Tig + (1 — Wi)Nig-

We assume Ny ~ LN (ung, 0%,) and Tig ~ LN (pry, 0F,) where
LN represents a log, Normal distribution.

Step i. Given the Y's and the distribution of the N's, we search for a set of {7} that
maximize the likelihood of observing Y, using the Nelder-Mead procedure.

Step ii. Given the 7's and the distributions of the T's and N's, we estimate an
individual pair of (¢,n) for each sample and each gene.
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Geometric interpretation of the individual deconvolution.

argmax,, O(tiglfirg, 5%9 )é (
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where ¢(-|u, o?) is a logs Normal density with corresponding mean

 and variance o2.

Normal tissue expression density

i
5

9

Nig=Yigl (1-T8) ~tgT/(1-1))
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L Stromal expression

L Results

Real data with known proportions for validation

GSE19830 (Shen-Orr et al., 2010). Twelve liver-brain mixed
samples.

A GSE5350 from the MicroArray Quality Control (MAQC)
project (MAQC Consortium, 2006). Ten mixed samples from
Affymetrix and ten mixed samples from Illumina arrays.

Affymetrix Twelve brain-heart mixed samples.
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L Stromal expression

L Results

Proportion estimations
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Deconvolved individual gene expressions
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Expected changes
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L Stromal expression

LNew development: DeMix-Bayes versus ISOpure

Our general framework for RNAseq data

Assumption

For gene g and sample 4, 7; is an unknown cell fraction for sample ¢
Y;g = 7riTig + (1 - Wi)Nig-
We assume Ny4 and T;, follow 1) Negative binomial distribution,

with overdispersion parameters 774 and 7x4. or 2) Poisson
distribution.
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Prior

Noninformative or informative priors

pNg, g ~ Normal(0,10°),
nng % 1G(0.1,0.1),
nre < 1G(0.1,0.1),
indep [ Beta(ax,br),no prior knowledge
Beta(ar,,bx,;), with prior knowledge

il

We use the Metropolis algorithm with the random walk proposal
distribution.
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L Stromal expression
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ISOpure, Genome Medicine 2013

Model

R
tn = apcn + Z en,rbr + €n,

r=1

where ¢, represents the individual tumor expression level, b,
represents a tissue profile, o, represents tumor proportion and 0,, ;.
represents proportion of tissue represented by profile b,..
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Simulations - RNA-seq

7 _estimation
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L Results

Data example with known truth: 7 estimation

m TCGA RNAseq bam files: 8 samples with normal breast
tissues, 8 samples with normal kidney tissues.
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L Stromal expression
L Results

Data example with unknown truth: 7 estimation

m TCGA on-going study of prostate cancer. Matching DNA samples are
available. ABSOLUTE estimates tumor proportions using SNP arrays.
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L Results

Data example with unknown truth: 7 estimation

m TCGA on-going study of prostate cancer. Matching DNA samples are
available. ABSOLUTE estimates tumor proportions using SNP arrays.
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Little correlation between these proportions and the pathologists’ estimates.
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Data example with unknown truth: deconvolved

expressions

Mean of expressions (corr: ~0.90)
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L Discussion

Summary

Demix : statistical framework for gene expression deconvolution

m Only one mixture component is needed. Training sets,
reference genes, and pathologists’ guess are not required.

m Applicable to matched/unmatched sample designs.
Individualized deconvolution is available.

m DeMix-Bayes is more flexible to include prior knowledge and
provides uncertainty measure.
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L Discussion

Summary

Demix : statistical framework for gene expression deconvolution

m Only one mixture component is needed. Training sets,
reference genes, and pathologists’ guess are not required.

m Applicable to matched/unmatched sample designs.
Individualized deconvolution is available.

m DeMix-Bayes is more flexible to include prior knowledge and
provides uncertainty measure.

m Noise in low abundance regions, normalization matters.

m Linearity assumption : empirically true. Beware of extreme
values.

Sensitivity of our model to the “normal” samples.
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