Two Aspects in Tumor Heterogeneity: Subclonal Mutations and Stromal Expression

Wenyi Wang, PhD

Department of Bioinformatics and Computational Biology
The University of Texas MD Anderson Cancer Center

June 3, 2014

- Subclonal mutations

Motivation

Evolution of subclonal mutations in Acute Myeloid Leukemia (Ding et al. Nature 2012)

—Subclonal mutations

Motivation

Evolution of subclonal mutations in Acute Myeloid Leukemia (Ding et al. Nature 2012)

- Subclonal mutations

-Motivation

Evolution of subclonal mutations in Chronic Lymphocytic Leukemia (Landau et al. Cell 2013)

- Subclonal mutations

- Motivation

Evolution of subclonal mutations in Chronic Lymphocytic Leukemia (Landau et al. Cell 2013)

- Subclonal mutations

- Motivation

Evolution of subclonal mutations in Chronic Lymphocytic Leukemia (Landau et al. Cell 2013)

Statistical question: how do we identify subclonal mutations in the DNA sequencing data from tumor samples?

—Subclonal mutations

$\square_{\text {Methods }}$

PyClone, Nature Methods 2014

The probability p of a read containing variant allele with mutation state $\psi=\left(g_{N}, g_{R}, g_{V}\right)$ and cellular prevalence ϕ is given by:

$$
\begin{aligned}
p(\psi, \phi, t) & =\frac{(1-t) c\left(g_{N}\right)}{Z} \mu\left(g_{N}\right)+\frac{t(1-\phi) c\left(g_{R}\right)}{Z} \mu\left(g_{R}\right)+\frac{t \phi c\left(g_{V}\right)}{Z} \mu\left(g_{V}\right) \\
Z & =(1-t) c\left(g_{N}\right)+t(1-\phi) c\left(g_{R}\right)+t \phi c\left(g_{V}\right)
\end{aligned}
$$

—Subclonal mutations

- Methods

PyClone, Nature Methods 2014

The probability p of a read containing variant allele with mutation state $\psi=\left(g_{N}, g_{R}, g_{V}\right)$ and cellular prevalence ϕ is given by:

$$
\begin{aligned}
p(\psi, \phi, t) & =\frac{(1-t) c\left(g_{N}\right)}{Z} \mu\left(g_{N}\right)+\frac{t(1-\phi) c\left(g_{R}\right)}{Z} \mu\left(g_{R}\right)+\frac{t \phi c\left(g_{V}\right)}{Z} \mu\left(g_{V}\right) \\
Z & =(1-t) c\left(g_{N}\right)+t(1-\phi) c\left(g_{R}\right)+t \phi c\left(g_{V}\right)
\end{aligned}
$$

The cellular prevalence ϕ cannot be deconvoluted into subclonal fractions, unless under stringent assumptions of mutational evolution.

- Subclonal mutations

$\square_{\text {Methods }}$

Lee et al. and Xu et al. 2014

Straightforward modeling of the fraction of cell clone c for sample t using $w_{t c}$:

$$
\left.\begin{array}{rl}
p_{s t} & =w_{t 0} p_{0}+\sum^{C} w_{t c} z_{s c} \\
& \text { SNV } \\
\begin{array}{|c|c|c|c|c|c|}
\hline & 0 & 0 & 1 & 2 & 3 \\
\hline
\end{array} & 4 \\
\hline & 1 \\
2 & \\
& \\
\hline
\end{array}\right)
$$

—Subclonal mutations

- Methods

Lee et al. and Xu et al. 2014

Straightforward modeling of the fraction of cell clone c for sample t using $w_{t c}$:

\[

\]

There is no genotype estimation. The interpretation of $w_{t c}$ is therefore convoluted with one fixed type of mutation genotype, e.g. pairs of haplotypes, or extend $z_{s c}$ to be catogorical: $(0,1,2)$

Summary

■ Clonal evolution is a key feature of cancer progression and relapse.
■ Identification of subclonal mutations in cancer studies consists of

- Estimating total number of subclones and their mixing proportions
- Finding mutations within each cellular subclone

$\square_{\text {Stromal expression }}$

$L_{\text {Motivation }}$

Distinct compartments and changing proportions in tumor samples

$L_{\text {Motivation }}$

Issue of tumor heterogeneity in gene expression

Traditional gene expression (GE) profiling

■ True tumor cell gene expressions are masked by stromal cell gene expressions

Gene expression, Stromal cell fraction: 45\%

$\square_{\text {Motivation }}$

Previous work

Gene expression deconvolution
■ Experimental: Laser-capture microdissection (LCM, 1996)

- In silico: $A X=B$ for each mixed sample, where A is a matrix pure cell expressions, X is a vector of proportions, B is the observed heterogeneous expression data
$\square_{\text {Motivation }}$

Previous work

Gene expression deconvolution
■ Experimental: Laser-capture microdissection (LCM, 1996)

- In silico: $A X=B$ for each mixed sample, where A is a matrix pure cell expressions, X is a vector of proportions, B is the observed heterogeneous expression data

Linear assumption

For gene g and sample i, π_{i} is an unknown cell fraction for sample i

$$
Y_{i g}=\pi_{i} T_{i g}+\left(1-\pi_{i}\right) N_{i g} .
$$

where $T_{i g}$ represents tumoral expression and $N_{i g}$ represents stromal expression.

Challenges with gene expression deconvolution

- Linearity assumption holds better with raw measured data (Liu and zhong, Nature Methods 2011)
- There is need for more practical way to jointly estimate the mean of A across samples and X.

■ Estimating individual expression A is needed for clinical profiling.

$\square_{\text {Stromal expression }}$

Motivation

GSE19830 data with known proportions

Using log-transformed data, Linearity does not hold

$\log 2$ transformed T - N
$\log 2$ transformed $\mathrm{T}-\mathrm{N}$

$\square_{\text {Stromal expression }}$

Motivation

GSE19830 data with known proportions

Using raw-measured data, linearity holds

- Stromal expression

- Motivation

Clinical impact - deconvolved individual gene expressions

$L_{\text {Motivation }}$

Related concepts

Matched versus unmatched samples

$\square Y_{i g}=\left(1-\pi_{i}\right) N_{i g}+\pi_{i} T_{i g}=>\quad \pi_{i}=\left(Y_{i g}-N_{i g}\right) /\left(T_{i g}-N_{i g}\right)$, \rightarrow Applies to sample-specific and gene-specific Y's and N's (matched design).

- In practice, we often need to deconvolve for unmatched samples
$\square_{\text {Motivation }}$

Related concepts

Matched versus unmatched samples
■ $Y_{i g}=\left(1-\pi_{i}\right) N_{i g}+\pi_{i} T_{i g}=>\quad \pi_{i}=\left(Y_{i g}-N_{i g}\right) /\left(T_{i g}-N_{i g}\right)$, \rightarrow Applies to sample-specific and gene-specific Y's and N's (matched design).
■ In practice, we often need to deconvolve for unmatched samples
$\underline{\text { Reference genes }}$

- Genes with known expression profiles for both tumor and normal samples.
- Available methods require knowledge of reference genes for deconvolution. What can we do when no reference genes are available?

Motivation

Goals

Using raw-measured data, we develop a general framework that
■ Estimates unobserved cell-type proportions in heterogeneous samples with/without knowledge of reference genes

- Reconstitute pure normal/tumor gene expressions for matched/unmatched individual samples

- Methods

Ahn et al. Bioinformatics 2013

Assumption

For gene g and sample i, π_{i} is an unknown cell fraction for sample i

$$
Y_{i g}=\pi_{i} T_{i g}+\left(1-\pi_{i}\right) N_{i g}
$$

We assume $N_{i^{\prime} g} \sim L N\left(\mu_{N g}, \sigma_{N g}^{2}\right)$ and $T_{i g} \sim L N\left(\mu_{T g}, \sigma_{T g}^{2}\right)$ where $L N$ represents a $\log _{2}$ Normal distribution.

Step i. Given the Y 's and the distribution of the N 's, we search for a set of $\{\boldsymbol{\pi}\}$ that maximize the likelihood of observing Y, using the Nelder-Mead procedure.
Step ii. Given the $\hat{\pi}$'s and the distributions of the T 's and N 's, we estimate an individual pair of (t, n) for each sample and each gene.

L Methods

Geometric interpretation of the individual deconvolution.

$$
\operatorname{argmax}_{t_{i g}} \phi\left(t_{i g} \mid \hat{\mu}_{T g}, \hat{\sigma}_{T g}^{2}\right) \phi\left(\left.\frac{y_{i g}-\hat{\pi}_{i} t_{i g}}{1-\hat{\pi}_{i}} \right\rvert\, \hat{\mu}_{N g}, \hat{\sigma}_{N g}^{2}\right)
$$

where $\phi\left(\cdot \mid \mu, \sigma^{2}\right)$ is a $\log _{2}$ Normal density with corresponding mean μ and variance σ^{2}.

- Results

Real data with known proportions for validation

1 GSE19830 (Shen-Orr et al., 2010). Twelve liver-brain mixed samples.
2 GSE5350 from the MicroArray Quality Control (MAQC) project (MAQC Consortium, 2006). Ten mixed samples from Affymetrix and ten mixed samples from Illumina arrays.
3 Affymetrix Twelve brain-heart mixed samples.

- Stromal expression

- Results

Proportion estimations

L Results

Deconvolved individual gene expressions

| |
| :--- | :--- | :--- |

$\square_{\text {Stromal expression }}$

Results

Expected changes

LNew development: DeMix-Bayes versus ISOpure

Our general framework for RNAseq data

Assumption

For gene g and sample i, π_{i} is an unknown cell fraction for sample i

$$
Y_{i g}=\pi_{i} T_{i g}+\left(1-\pi_{i}\right) N_{i g} .
$$

We assume $N_{i^{\prime} g}$ and $T_{i g}$ follow 1) Negative binomial distribution, with overdispersion parameters $\eta_{T g}$ and $\eta_{N g}$. or 2) Poisson distribution.

L New development: DeMix-Bayes versus ISOpure $^{\text {I }}$

Prior

Noninformative or informative priors

$$
\begin{aligned}
\mu_{N g}, \mu_{T g} & \stackrel{i i d}{\sim} \\
\eta_{N g} & \stackrel{i i d}{\sim} \operatorname{Iormal}\left(0,10^{5}\right), \\
\eta_{T g} & \stackrel{i i d}{\sim} \operatorname{IG}(0.1,0.1), \\
& (0.1),
\end{aligned}
$$

$$
\pi_{i} \left\lvert\, \cdot \stackrel{i n d e p}{\sim}\left\{\begin{array}{l}
\operatorname{Beta}\left(a_{\pi}, b_{\pi}\right), \text { no prior knowledge } \\
\operatorname{Beta}\left(a_{\pi_{i}}, b_{\pi_{i}}\right), \text { with prior knowledge }
\end{array}\right.\right.
$$

We use the Metropolis algorithm with the random walk proposal distribution.

LNew development: DeMix-Bayes versus ISOpure

ISOpure, Genome Medicine 2013

Model

$$
t_{n}=\alpha_{n} c_{n}+\sum_{r=1}^{R} \theta_{n, r} b_{r}+\epsilon_{n}
$$

where c_{n} represents the individual tumor expression level, b_{r} represents a tissue profile, α_{n} represents tumor proportion and $\theta_{n, r}$ represents proportion of tissue represented by profile b_{r}.

- Stromal expression

$\left\llcorner_{\text {Results }}\right.$

Simulations - RNA-seq

π estimation

- Stromal expression

$\left\llcorner_{\text {Results }}\right.$

Data example with known truth: π estimation

- TCGA RNAseq bam files: 8 samples with normal breast tissues, 8 samples with normal kidney tissues.

-Stromal expression
 Results
 Data example with unknown truth: π estimation

■ TCGA on-going study of prostate cancer. Matching DNA samples are available. ABSOLUTE estimates tumor proportions using SNP arrays.

-Stromal expression
 Results
 Data example with unknown truth: π estimation

- TCGA on-going study of prostate cancer. Matching DNA samples are available. ABSOLUTE estimates tumor proportions using SNP arrays.

Little correlation between these proportions and the pathologists' estimates.

$\square_{\text {Stromal expression }}$

Data example with unknown truth: deconvolved expressions

SD across genes

Summary

Demix : statistical framework for gene expression deconvolution
■ Only one mixture component is needed. Training sets, reference genes, and pathologists' guess are not required.

- Applicable to matched/unmatched sample designs. Individualized deconvolution is available.
- DeMix-Bayes is more flexible to include prior knowledge and provides uncertainty measure.

Summary

Demix : statistical framework for gene expression deconvolution
■ Only one mixture component is needed. Training sets, reference genes, and pathologists' guess are not required.

- Applicable to matched/unmatched sample designs. Individualized deconvolution is available.
- DeMix-Bayes is more flexible to include prior knowledge and provides uncertainty measure.

■ Noise in low abundance regions, normalization matters.
■ Linearity assumption : empirically true. Beware of extreme values.

- Sensitivity of our model to the "normal" samples.

Acknowledgements

■ MD Anderson Cancer Center

- Ying Yuan
- Yu Fan
- Zeya Wang
- Ignacio Wistuba
- Milind Suraokar
- John Heymach
- Georgetown University
- Jaeil Ahn
- Texas A\&M
- Sara Algeri

■ Dana Farber Cancer Institute
■ Giovanni Parmigiani

- Svitlana Tyekucheva
- The Cancer Genome Atlas Project

