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Outline

1. What is Dynamic Prediction?

2. A Motivating Example: Chronic Myelogenous Leukemia (CML)

3. Current Methods

• Joint Modelling of Longitudinal and Survival Data: Not well-suited for

prediction

• Landmark Analysis: Separate unrelated predictions on discrete time points

4. Proposal: An Information-cumulating Model for Predictive Analysis

Continuously over Time (IMPACT)

5. Dynamic Predictive Analysis for CML
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Dynamic Prediction

• Keep making updated predictions as time goes by and more data are observed

• After treatment, we need prediction of future disease prognosis at all the time

points during a patient’s follow-up visits.

• To decide whether or not to initiate extra treatments or interventions.

• Need use not only the baseline information, but also all the information up to

the time point of prediction.
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Chronic Myelogenous Leukemia (CML)

• The first human cancer that was linked to a single, acquired abnormal gene,

the BCR-ABL gene.

• Tyrosine kinase inhibitors (TKIs) can inhibit the BCR-ABL gene.

• Frontline treatment trial of TKIs was usually successful: motivating data set for

this talk.

• TKIs are not chemotherapy, have no severe side effects.

• The disease residual can be measured by the expression level of the BCR-ABL

gene.
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Chronic Myelogenous Leukemia (CML)

• Patients have their BCR-ABL expression levels measured roughly every three

months, but in reality can be any time.

• Current practice is to wait until disease relapse (with clinical symptoms) to

initiate other treatments

• Question: Can we use BCR-ABL levels to predict future disease relapse and

initiate other treatments for early prevention?
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Chronic Myelogenous Leukemia (CML)

• Note: An increasing of BCR-ABL during prolonged remissions does not

automatically constitute relapse on its own. Reasons:

– Patient’s failure to comply (the pills are expensive, need to take everyday)

– BCR-ABL trajectories have cyclic oscillations

• Initiating other treatments too early is not good either, because they are toxic

and risky chemotherapies / stem cell transplant

• Need a good dynamic prediction model
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Figure 1: Biomarker Trajectories for Three Patients
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Chronic Myelogenous Leukemia (CML)

• Biomarker changing patterns vary greatly from patient to patient

• It is difficult to use parametric models to fit such longitudinal data

• No, I am not going to use non-parametric models

• I will try to avoid using a longitudinal model for biomarker data

• Still, I need to use longitudinal biomarker data to predict survival
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Figure 2: BCR-ABL Measurements for All Patients
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Figure 4: Irregular repeated measurements for biomarkers
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Chronic Myelogenous Leukemia (CML)

• Need use BCR-ABL expression level to predict future disease relapse

• Patients may visit any time between the scheduled visits, so need do prediction

at any time, not just some specific time points

• Prediction model should be able to use biomarker measurements from

irregular time intervals
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Notation

Ti: Time to disease relapse, or simply survival time

Ci: Censoring time

Xi = min(Ti, Ci), ∆i = Ti ≤ Ci

λi(t): Hazard function of Ti, describing failure risk rate at time t

Yi: Baseline covariates

Zi(t): longitudinal biomarker value at time t

tik: the kth biomarker measurement time for the ith subject, k = 1, · · · , ni.
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Current Approaches
for Dynamic Prediction

1. Joint modeling of longitudinal biomarkers and survival data

2. Landmark analysis
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Joint Modeling: Current Approach (1)
for Dynamic Prediction

Joint modeling of longitudinal biomarkers and survival data

• Use random effect model for longitudinal data

• Cox proportional hazards model for survival, with longitudinal biomarkers as

time-dependent covariates
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Current Approach (1) Joint Modeling:
Inconvenience for Prediction

Model: λi(t) = λ0(t) exp{β
′
Zi(t)} ,

Prediction at time t, conditional on Ti ≥ t,

Pr(Ti ≥ t + v|Ti ≥ t)

= exp

[
−

∫ t+v

t

λ0(u) exp{β
′
Zi(u)} du

]
.

Inconvenience (1):

Need future values of Z(u) for u > t that are not available yet at the time t.

17



Current Approach (1) Joint Modeling:
Inconvenience for Prediction

Assume event times {xi : i = 1, · · · , n} sorted ascendingly without ties, need

maximize L(β) to estimate β,

L(β) =
n∏

i=1

[
exp{β′Zi(xi)}∑
j≥i exp{β′Zj(xi)}

]∆i

Inconvenience (2):

For each event time xi, need not only Zi(xi), but also Zj(xi) for all j ≥ i.

Such Zj(xi) are usually not observed.
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Current Approach (2)
Landmark Analysis for Dynamic Prediction

• Do predictions at only some selected time points.

• For each selected time point, use a Cox model with only time-independent

covariate to summarize biomarker information up to this point.

• Does not use information after this point, i.e., no need to use future biomarker

values.
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Current Approach (2)
Landmark Analysis: Inconveniences

• Can be done only at selected time points

λi,0(t) = λ0,0(t) exp{β′
0Zi(0)} ,

λi,3(t) = λ0,3(t) exp{β′
3Zi(3)} ,

λi,6(t) = λ0,6(t) exp{β′
6Zi(6)} ,

· · · · · ·

• Over-parameterized with λ0,0(t), λ0,3(t), λ0,6(t), · · · and β0, β3, β6, · · ·.

• Smoothing techniques have been used to put constraints on the above

parameters
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A New Approach for Dynamic Prediction

We try to provide a method that

• does prediction at any time point, not just on pre-specified time points such as

t = 0, 3, 6, · · · , tm .

• does not use future value Z(t + v) for prediction at time t

• does not need a model for covariates

• can use biomarker measurements from irregular time intervals

• dose not need to fill biomarker values on other subjects’ event time points.
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Proposal: Information-cumulating Model for Predictive Analysis
Continuously over Time (IMPACT)

The new approach

• is modified from landmark analysis

• so does not need to use future value Z(t + v) for prediction at time t

• Landmark analysis fits m separate models, one for each selected time point.

• The new approach uses two-stage modeling,

– 1st stage: Fit a Cox model for t = 0,

– 2nd stage: Add on to the model for t = 0 to fit for all t > 0.
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

Key step: How to add on to the model for t = 0 to fit for all t > 0?

Answer: Use a fundamental equality for conditional survival.

Suppose λ0(u) is the hazard function for T ,

and λt(u) is the hazard function for T − t|T > t for T − t = u.

Then we have λt(u) = λ0(t + u) for all t > 0.
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Derivation (1)

Let S0(t) = Pr(T ≥ t) = exp(−
∫ t

0
λ0(v) dv), then,

Pr(T ≥ t + u|T ≥ t) =
S0(t + u)

S0(t)

, St(u) = exp(−
∫ u

0

λt(v) dv)

=
exp(−

∫ t+u

0
λ0(v) dv)

exp(−
∫ t

0
λ0(v) dv)

= exp(−
∫ t+u

t

λ0(v) dv)

= exp(−
∫ u

0

λ0(t + v) dv)

=⇒ λt(v) = λ0(t + v), i.e., λ3(v) = λ0(v + 3), · · ·.
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Derivation (2)

λ0(v) =
−S′(v)

S(v)
,

λt(v) =
−S′

t(v)

St(v)

=
−∂S(t+v)/S(t)

∂v

S(t + v)/S(t)

=
−∂S′(t+v)

∂v

S(t + v)

=⇒ λt(v) = λ0(t + v)

27



Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

• Fundamental equality: λt(v) = λ0(t + v).

• Use this inherent constraint for hazard functions of the same survival time T at

different time origins.

• Result in a more parsimonious approach for prediction of T at any t > 0

given T ≥ t.
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

• Stage 1: Using only demographics and biomarker information at baseline

(t = 0) for prediction

• Stage 2: Using longitudinal biomarker information beyond baseline (t > 0) to

improve prediction obtained from stage 1 (Information-cumulating)
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

Stage 1: Use a Cox model with only baseline (time-independent) covariates Yi

λi(t) = λ0(t) exp{α
′
Yi} ,

This implies, without using any longitudinal data beyond baseline, prediction at

time t can be done by

Si(t + u|Ti ≥ t, Yi)

=
Si(t + u|Zi)

Si(t|Yi)
=

{
S0(t + u)

S0(t)

}exp(α
′
Yi)

.
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

Stage 2: At time t, with longitudinal data Zi(t), postulate the hazard function of

Ti − t as

λi,t(u) = λ0,t(u) exp{α
′
Yi + β

′
(t)Zi(t)}

= λ0(t + u) exp{α′
Yi + β

′
(t)Zi(t)} .

Notes:

• Infinite number of reference hazard functions λ0,t(u) indexed by t > 0 have

been expressed by a single reference hazard function λ0(t + u).

• Need smoothness assumptions for β(t)
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

Then the previous prediction

Pr(t + u|Ti ≥ t, Yi) =

{
S0(t + u)

S0(t)

}exp(α
′
Yi)

.

can be improved by

Pr(Ti ≥ t + u|Ti ≥ t, Yi, Zi(t))

=
Si(t + u|Zi(t))

Si(t|Yi, Zi(t))
=

{
S0(t + u)

S0(t)

}exp{α′
Yi+β

′
(t)Zi(t)}

with improvement achieved by additional information in Z(t).
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

• Longitudinal data Zi(t) are used to further distinguish subjects surviving at

time t.

• Subjects may have β
′
(t)Zi(t) > 0, = 0, or < 0

• Correspond to prediction by using Z(t) being worse, equal or better than

prediction without using Z(t).
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

• Note Stage 2 specifies a landmark analysis model for each t > 0.

• Recall that landmark analysis does not use future values for prediction.

• This is why the new approach does not need use future biomarker data in

prediction.

• Next a few slides show how we avoid using unobserved Zj(xi), j ≥ i.
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Two-Stage Parameter Estimation for IMPACT

Stage 1: Estimate α and S0(t), t ≥ 0.

• Only the baseline covariate Y and survival information are used to fit a Cox

model (with time-independent covariates).

• Maximizing partial likelihood to obtain α̂

• The Breslow estimator for S0(t), t ≥ 0.

Ŝ0(t) = exp

−
∑
xi≤t

δi∑
xj≥xi

exp(α̂′Yj)



35



Two-Stage Parameter Estimation for IMPACT

Stage 2: Estimate β(t)

• From a subject with data Y , Z(t1), Z(t2), · · ·, Z(tm) and survival T ,

• Create m pseudo-subjects with data shown below:

Subject 1: Baseline covariates Y and Z(t1), survival time T − t1;

· · ·
Subject m: Baseline covariates Y and Z(tm), survival time T − tm;

• Each pseudo-subject contributes a likelihood term.
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Two-Stage Parameter Estimation for IMPACT

• Each pseudo-subject contributes a likelihood term.

Subject 1: T − t1 ∼
{

Ŝ0(t1+t)

Ŝ0(t1)

}exp{α̂′
Yi+β

′
(t1)Z(t1)}

;

· · ·

Subject m: T − tm ∼
{

Ŝ0(tm+t)

Ŝ0(tm)

}exp{α̂′
Yi+β

′
(tm)Z(tm)}

.
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Two-Stage Parameter Estimation for IMPACT

Stage 2: Estimate β(t) (re-parameterized into β)

• Working independence between pseudo-subjects

• Pseudo-likelihood = product of likelihood terms of all pseudo-subjects

• Maximize pseudo-likelihood to estimate β,

• With α̂ and Ŝ0(·) being fixed in Stage 2.

• Fixed Ŝ0(·) eliminates the need to use Cox-type partial likelihood for

estimating β, and so eliminates the need to know Zj(xi), j ≥ i.

• The only unknown parameter in the pseudo likelihood is β.
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

• Using a training data set, get estimators α̂, Ŝ0(t), t ≥ 0 (Stage 1), and β̂(t)

(Stage 2).

• For a new subject, at time t with covariate value Znew(t), predict his survival

distribution as

Pr(Tnew ≥ t + u|Tnew > t, Ynew, Znew(t))

=

{
Ŝ0(t + u)

Ŝ0(t)

}exp{α̂′
Ynew+β̂

′
(t)Znew(t)}
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

Assume a parametric form or use splines for β(t).

• Trade-off between

– Using parametric models for Z(t) to impute covariate values at time points

they are not observed

– Assuming a parametric form for β(t).

• It is reasonable to believe that the true shape of β(t) is more smooth than

covariate Z(t).

• Covariate Z(t)’s are very bumpy, see next.
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

An example of a parametric form β(t), after re-parameterizing,

Pr(Ti ≥ t + u|Ti ≥ t, Zi(t))

=
Si(t + u|Zi(t))

Si(t|Zi(t))

=

{
S0(t + u)

S0(t)

}exp{α′Yi+β
′
0Zi(0)+β

′
1 ln(t+1)Zi(t)}
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CML Example

The model for dynamic prediction

Pr(Tnew ≥ t + u|Tnew > t, Znew(t))

=

{
Ŝ0(t + u)

Ŝ0(t)

}exp{α̂′
Ynew+β̂

′
(t)Znew(t)}

with

α̂
′
Ynew + β̂

′
(t)Znew(t)

= 0.458 I(age > 60) + 0.0185 BCR(0)

−0.298 log(t + 1) − 0.002 BCR(t) log(t + 1).

43



0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Month

P
F

S
 p

ro
b
a
b
ili

ty

Overall

BCR−ABL=1 at 10 months

BCR−ABL=30 at 10 months

Figure 5: (1) Without using Z(10) (solid line), (2) Z(10)= 1 (dashed line), and (3) Z(10)= 30 (dotted line).
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Figure 6: A biomarker trajectory with average (typical) survival
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Summary

• Proposed approach uses a series of landmark analysis models over

continuous t that are smoothed by using a parametric or spline β(t).

• Landmark analysis approach avoids need to use future biomarker values in

prediction.

• Two-stage estimation approach

– avoids need of Zj(xi), j ≥ i by estimating λ0(t) (and thus S0(t)) from

the 1st stage and being fixed at 2nd stage

– avoids need of model for Z(t).
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Discussion

• The estimation and interpretation of α are not distorted by intermediate

outcomes reflected in time-dependent covariates Z(t).

• This is usually what we want, i.e., α estimates the marginal population effects

of baseline covariates on survival.

• The interpretation of corresponding regression coefficients in joint modeling is

awkward.

• Bottom line: Proposed approach is easy and convenient to use.
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