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3. Current Methods

e Joint Modelling of Longitudinal and Survival Data: Not well-suited for
prediction

e Landmark Analysis: Separate unrelated predictions on discrete time points

4. Proposal: An Information-cumulating Model for Predictive Analysis
Continuously over Time (IMPACT)

5. Dynamic Predictive Analysis for CML




Dynamic Prediction

e Keep making updated predictions as time goes by and more data are observed

e After treatment, we need prediction of future disease prognosis at all the time
points during a patient’s follow-up visits.

e To decide whether or not to initiate extra treatments or interventions.

e Need use not only the baseline information, but also all the information up to

the time point of prediction.




Chronic Myelogenous Leukemia (CML)

e The first human cancer that was linked to a single, acquired abnormal gene,
the BCR-ABL gene.

e Tyrosine kinase inhibitors (TKIs) can inhibit the BCR-ABL gene.

e Frontline treatment trial of TKls was usually successful: motivating data set for
this talk.

e TKIs are not chemotherapy, have no severe side effects.

e The disease residual can be measured by the expression level of the BCR-ABL

gene.




Chronic Myelogenous Leukemia (CML)

e Patients have their BCR-ABL expression levels measured roughly every three
months, but in reality can be any time.

e Current practice is to wait until disease relapse (with clinical symptoms) to
initiate other treatments

e Question: Can we use BCR-ABL levels to predict future disease relapse and

initiate other treatments for early prevention?




Chronic Myelogenous Leukemia (CML)

e Note: An increasing of BCR-ABL during prolonged remissions does not
automatically constitute relapse on its own. Reasons:

— Patient’s failure to comply (the pills are expensive, heed to take everyday)
— BCR-ABL trajectories have cyclic oscillations

e Initiating other treatments too early is not good either, because they are toxic
and risky chemotherapies / stem cell transplant

e Need a good dynamic prediction model




BCR_ABL Expression Levels Over Time
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Figure 1: Biomarker Trajectories for Three Patients




Chronic Myelogenous Leukemia (CML)

Biomarker changing patterns vary greatly from patient to patient
It is difficult to use parametric models to fit such longitudinal data
No, | am not going to use non-parametric models

| will try to avoid using a longitudinal model for biomarker data

Still, I need to use longitudinal biomarker data to predict survival
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Figure 2: BCR-ABL Measurements for All Patients
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Figure 3: Regular repeated measurements for biomarkers
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Figure 4: Irregular repeated measurements for biomarkers




Chronic Myelogenous Leukemia (CML)

e Need use BCR-ABL expression level to predict future disease relapse

e Patients may visit any time between the scheduled visits, so heed do prediction
at any time, not just some specific time points

e Prediction model should be able to use biomarker measurements from

irregular time intervals




Notation

T’;: Time to disease relapse, or simply survival time

C;: Censoring time

X; = min(T;, C;), A; =T; < C;

A;(t): Hazard function of T}, describing failure risk rate at time ¢
Y;: Baseline covariates

Z;(t): longitudinal biomarker value at time ¢

t;r: the Et biomarker measurement time for the ¢tN subject, k = 1, .-, n,;.




Current Approaches
for Dynamic Prediction

1. Joint modeling of longitudinal biomarkers and survival data

2. Landmark analysis




Joint Modeling: Current Approach (1)
for Dynamic Prediction

Joint modeling of longitudinal biomarkers and survival data
e Use random effect model for longitudinal data

e Cox proportional hazards model for survival, with longitudinal biomarkers as

time-dependent covariates




Current Approach (1) Joint Modeling:
Inconvenience for Prediction

Model: \;(t) = Ao(t) exp{3 Z;(t)},

Prediction at time ¢, conditional on T; > t,

= o[- | 7 o) exp {8 Zi(u)} du

Inconvenience (1):

Need future values of Z (u) for u > t that are not available yet at the time ¢.




Current Approach (1) Joint Modeling:
Inconvenience for Prediction

Assume event times {x; : ¢ = 1, .-+, n} sorted ascendingly without ties, need
maximize L((3) to estimate 3,

o[ ep(8zZiz)y T
L(B) = ;,I;Il _ZjZi eXp{IB’Zj(mi)}_

Inconvenience (2):

For each event time x;, need not only Z;(x;), butalso Z;(x;) forall j > <.
Such Z;(x;) are usually not observed.




Current Approach (2)
Landmark Analysis for Dynamic Prediction

e Do predictions at only some selected time points.

e For each selected time point, use a Cox model with only time-independent
covariate to summarize biomarker information up to this point.

e Does not use information after this point, i.e., no need to use future biomarker

values.




Current Approach (2)
Landmark Analysis: Inconveniences

e Can be done only at selected time points

Aio(t) = Xo,o(t) exp{BZi(0)},
Ai,3(t) Xo,3(t) exp{B5Z:(3)}
Ai6(t) Xo,6(t) exp{BsZ;(6)},

e Over-parameterized with Ag (), Xo,3(%), Xo6(%), - - and Bo, B3, Be; * * -

e Smoothing techniques have been used to put constraints on the above

parameters
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A New Approach for Dynamic Prediction

We try to provide a method that

e does prediction at any time point, not just on pre-specified time points such as
t=0,3,6,---.¢,,.

e does not use future value Z(t + v) for prediction at time ¢
e does not need a model for covariates

e can use biomarker measurements from irregular time intervals

e dose not need to fill biomarker values on other subjects’ event time points.




Proposal: Information-cumulating Model for Predictive Analysis
Continuously over Time (IMPACT)

The new approach
e is modified from landmark analysis
e so does not need to use future value Z(t + v) for prediction at time %
e Landmark analysis fits 1M separate models, one for each selected time point.

e The new approach uses two-stage modeling,

— 1st stage: Fit a Cox model for t = 0O,

— 2nd stage: Add on to the model for £ = O to fitforallt > 0.




Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

Key step: How to add on to the model forf — O tofitforallt > 0?
Answer: Use a fundamental equality for conditional survival.

Suppose A\ (u) is the hazard function for 7,
and \;(w) is the hazard function for T' — t|T > tforT — t = w.

Then we have A\;(u) = Ag(t + w) forallt > O.




Hazard functions of T, T-t1|T>t1, T-t2|T>t2
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Derivation (1)

Let So(t) = Pr(T > t) = exp(— f(f Ao(v) dv), then,

So(t + u)
So(t)

Si(w) = exp(— [ " Ar(v) do)

_exp(= fo " do(v) dv)
B exp(— fo)\o(v)d’v) exp( = / Ao(v) dv)

= exp(— /Ou)\o(t—l—v) dv)

>

= A\(v) = Ao(t + v),ie, Az3(v) = Ag(v + 3), - -




Derivation (2)

—5'(v)

M) = )

—Si(v)

St(v)
—90S(t+v)/S(¢t)
ov
S(t+v)/S(t)
08’ (t+v)

ov

At (V)

S(t + v)
— A(V) = Ao(t+v)




Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

e Fundamental equality: A;(v) = Ao(t + v).

e Use this inherent constraint for hazard functions of the same survival time 1’ at
different time origins.

e Result in a more parsimonious approach for prediction of I'atany ¢ > 0O
given T > t.




Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

e Stage 1: Using only demographics and biomarker information at baseline
(t = 0) for prediction

e Stage 2: Using longitudinal biomarker information beyond baseline (£ > 0) to

improve prediction obtained from stage 1 (Information-cumulating)




Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

Stage 1: Use a Cox model with only baseline (time-independent) covariates Y
Ai(t) = Xo(t) exp{a Y;},

This implies, without using any longitudinal data beyond baseline, prediction at
time ¢ can be done by

Si(t + ulT; > ¢,Y;)

Si(t +ulZi) {So(t + ) }exp(a'm
L Se(t) '

Si(t|Y:)




Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

Stage 2: At time £, with longitudinal data Z;(t), postulate the hazard function of
T; — t as

Xot(u) exp{a'Y; + B (t) Z;(t)}
Xo(t + u) exp{a'Y; + B'(t) Z; (1)} .

)\,,;,t(u)

Notes:

e Infinite number of reference hazard functions Ag () indexed by ¢ > 0 have
been expressed by a single reference hazard function \g (t + u)

e Need smoothness assumptions for 3(t)




Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

Then the previous prediction

Solt + u) }e"p(“'“’

Pr(t +u|T; > t,Y;) = { So(0)
0

can be improved by
Pr(Ti Z L+ ulle Z L, sz'9 Zz(t))

_ St +u|Zi(t) _ {So(t+u)}exp{a'nw’(t)zi(t)}
O SitY, Zi(t) L So(t)

with improvement achieved by additional information in Z(t).




Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

e Longitudinal data Z; (t) are used to further distinguish subjects surviving at
time ©.

e Subjects may have 3 () Z;(t) > 0, = 0,0r < 0

e Correspond to prediction by using Z (t) being worse, equal or better than
prediction without using Z ().




Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

e Note Stage 2 specifies a landmark analysis model for each t > 0.
e Recall that landmark analysis does not use future values for prediction.

e This is why the new approach does not need use future biomarker data in
prediction.

e Next a few slides show how we avoid using unobserved Z;(x;),j > t.




Two-Stage Parameter Estimation for IMPACT

Stage 1: Estimate o and Sy(t),t > O.

e Only the baseline covariate Y and survival information are used to fit a Cox
model (with time-independent covariates).

e Maximizing partial likelihood to obtain &

e The Breslow estimator for Sy(t),t > 0.

5 0;
So(t) = exp —Z 0

wigt Z:BJZQZ,L eXp(&,Y?) )




Two-Stage Parameter Estimation for IMPACT

Stage 2: Estimate 3(t)
e From a subject withdata Y, Z(t,), Z(t3),+ -+, Z(t,,) and survival T,

e Create  pseudo-subjects with data shown below:

Subject 1: Baseline covariates Y and Z (%), survival time T — t1;

Subject m: Baseline covariates Y and Z (t,,,), survival time T' — t,,;

e Each pseudo-subject contributes a likelihood term.




Two-Stage Parameter Estimation for IMPACT

e Each pseudo-subject contributes a likelihood term.

exp{&’ Yi+8 (t1)Z(t1)}

Subject 1: T" — t; ~ {S %f)t(f)t) } :

}exp{d/Yi—I-,B/ (tm)Z(tm)}

Subject m: T — t,,, ~ {So(tm+t)

So(tm)




Two-Stage Parameter Estimation for IMPACT

Stage 2: Estimate 3(t) (re-parameterized into (3)
e Working independence between pseudo-subjects
e Pseudo-likelihood = product of likelihood terms of all pseudo-subjects
e Maximize pseudo-likelihood to estimate (3,
e With & and Sy(+) being fixed in Stage 2.

e Fixed 5’0(-) eliminates the need to use Cox-type partial likelihood for
estimating 3, and so eliminates the need to know Z;(x;),j > t.

e The only unknown parameter in the pseudo likelihood is 3.




Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

e Using a training data set, get estimators ¢, Sy (t),t > 0 (Stage 1), and B(t)
(Stage 2).

e For a new subject, at time ¢ with covariate value Znew (%), predict his survival
distribution as

Pr(Thew = t + u|Thew > t, Ynew; Znew(?))

. exp{&’ Ynew+3 (t)Z L
3 So(t—l—’u,) P{& Ynew+B (t)Znew(t)}
So(t)




Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

Assume a parametric form or use splines for 3(t).

e Trade-off between

— Using parametric models for Z (t) to impute covariate values at time points
they are not observed

— Assuming a parametric form for 3(t).

e It is reasonable to believe that the true shape of (3(t) is more smooth than
covariate Z ().

e Covariate Z(t)’s are very bumpy, see next.
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Information-cumulating Model for Predictive Analysis Continuously
over Time (IMPACT)

An example of a parametric form ﬁ(t), after re-parameterizing,
Pr(T; >t + u|T; > t, Zi(t))
Si(t + u|Z;(t))

Si(t|Z;(t))

So(?)




CML Example

The model for dynamic prediction
Pr(Thew > t + u|Thew > t; Znew(?))

. exp{d’ Ynew-+3 (t)Z ¢
{S’O(t—i—u)} P{& Ynew+0B (t)Znew(t)}

So(t)

with
&' Ynew + B (t) Znew(t)
— 0.458 I(age > 60) 4 0.0185 BCR(0)
—0.298 log(t 4 1) — 0.002 BCR(t) log(t + 1).
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Figure 5: (1) Without using Z(10) (solid line), (2) Z(10)= 1 (dashed line), and (3) Z(10)= 30 (dotted line).
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Figure 6: A biomarker trajectory with average (typical) survival




Summary

e Proposed approach uses a series of landmark analysis models over
continuous t that are smoothed by using a parametric or spline 3(t).

e Landmark analysis approach avoids need to use future biomarker values in
prediction.

e Two-stage estimation approach

— avoids need of Z;(x;),J > % by estimating A¢(%) (and thus Sy (t)) from
the 1st stage and being fixed at 2nd stage

— avoids need of model for Z ().




Discussion

e The estimation and interpretation of & are not distorted by intermediate
outcomes reflected in time-dependent covariates Z ().

e This is usually what we want, i.e., & estimates the marginal population effects
of baseline covariates on survival.

e The interpretation of corresponding regression coefficients in joint modeling is
awkward.

e Bottom line: Proposed approach is easy and convenient to use.




