Two-way Regularized Matrix Decomposition

Jianhua Huang

Texas A\&M University

SVD and regularization

Examples of two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

SVD and regularization

Examples of two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

Singular value decomposition

- SVD: $\mathbf{X}=\mathbf{U D V}^{T}$
- $\mathbf{X}(n \times p)$
- U($n \times m$), $\mathbf{D}(m \times m), \mathbf{V}(p \times m), m=\min (n, p)$
- truncated SVD: $\mathbf{X}=\mathbf{U}_{k} \mathbf{D}_{k} \mathbf{V}_{k}^{T}, k \ll m$ $k=1: \mathbf{X}=d \mathbf{u} \mathbf{v}^{\top}$
- Eckart-Young theorem $\min \|\mathbf{X}-\widehat{\mathbf{X}}\|^{2}$ subject to rank constraint to $\widehat{\mathbf{X}}$

One-way regularized SVD

- $\left(\mathbf{u}_{1}, \mathbf{v}_{1}\right)=\arg \min _{\mathbf{u}, \mathbf{v}}\left\|\mathbf{X}-\mathbf{u v}^{T}\right\|_{F}^{2}+\lambda \mathcal{P}(\mathbf{v})$
- functional PCA
using roughness penalty

$$
\mathbf{v}^{\top} \boldsymbol{\Omega} \mathbf{v}=\sum_{i=2}^{n-1}\left\{v_{i-1}-2 v_{i}+v_{i+1}\right\}^{2}
$$

- sparse PCA
using sparsity-inducing penalty

$$
|\mathbf{v}|=\sum_{i=1}^{n}\left|v_{i}\right|
$$

Two-way structured data

- two-way functional data:
- row and column domains are structured
- mortality rate as a function of time and age
- functional-sparse structured data, e.g., fMRI data:
- row from temporal space, change continuously with time smooth
- column from spatial space, active region only a small proportion - sparse
- checkerboard structure data: biclustering problem

Regularized SVD

- Standard SVD

$$
\left(\mathbf{u}_{1}, \mathbf{v}_{1}\right)=\arg \min _{\mathbf{u}, \mathbf{v}}\left\|\mathbf{X}-\mathbf{u} \mathbf{v}^{T}\right\|_{F}^{2}
$$

- Regularized SVD!

$$
\left(\mathbf{u}_{1}, \mathbf{v}_{1}\right)=\arg \min _{\mathbf{u}, \mathbf{v}}\left\|\mathbf{X}-\mathbf{u} \mathbf{v}^{T}\right\|_{F}^{2}+\mathcal{P}(\mathbf{u}, \mathbf{v})
$$

- squared-error loss can be replaced
- How do we choose $\mathcal{P}(\mathbf{u}, \mathbf{v})$?
- Other formulations use constrained optimization: Allen, Witten, etc.

SVD and regularization

Examples of two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

Spanish mortality rate

- available in the Human Mortality Database
- each row: a year between 1908 and 2007
- each column: an age group from 0 to 110
- each cell: the mortality rate for a particular age group during that year
- two-way functional structured
- $\log (x+1 / 2)$

Two-way regularized SVD
LExamples of two-way regularized SVD

3-d view of the data

3-d view of the data (zoomed)

LExamples of two-way regularized SVD

Age plot of the data

LExamples of two-way regularized SVD

Year plot of the data

Two-way regularized SVD
LExamples of two-way regularized SVD

First component of SVD

Second component of SVD

Fitted and residual plot of the rank-2 model

Inverse problem of MEG source reconstruction

Imaging methods

- $\mathbf{Y}=\mathbf{X B}+\mathbf{E}$
- $\mathbf{Y} \in \mathbf{R}^{n \times s}$: measured MEG data (n sensors s time points).
- $\mathbf{B} \in \mathbf{R}^{p \times s}$: the potential source time courses in the cortical area (p source components, $p \gg n$).
- $\mathbf{X} \in \mathbf{R}^{n \times p}$: forward operator
can be derived using a head model
- $\mathbf{E} \in \mathbf{R}^{n \times s}$: noise
- Goal: solving for B—ill-posed

Two-way regularization

- $\mathbf{B}=\mathbf{A G}^{T} p \times s$
- $\mathbf{G} \in \mathbf{R}^{s \times q}$ contains the temporal features
- $\mathbf{A} \in \mathbf{R}^{p \times q}$ captures the spatial signals
- $q \leq s$

Penalized least squares problem

$$
\min _{\mathbf{a}, \mathbf{G}}\left\{\left\|\mathbf{Y}-\mathbf{X A G}^{T}\right\|_{F}^{2}+\mathcal{P}(\mathbf{A}, \mathbf{G})\right\}
$$

Desired properties

(a) Spatial focality

(b) Temporal smoothness

Synthetic example

(a) Simulated source time courses

(b) Simulated sensor signals

Figure: (a) simulated source time course using a sine-exponential function; (b) synthetical sensor time courses (SNR=6dB).

Figure: Reconstructed time courses by different methods at the center of the active area.

Figure: Reconstructed time courses by different methods at an arbitrary location near the edge of the active area ($\mathrm{SNR}=6 \mathrm{~dB}$).

Synthetic example

Figure: Overviews of brain mapping by different methods at 14 ms (SNR=6dB).

SVD and regularization

Examples of two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

Two formulations of regularized SVD

$$
\min _{\mathbf{u}, \mathbf{v}}\left\|\mathbf{X}-\mathbf{u v}^{\top}\right\|_{F}^{2}+\mathcal{P}(\mathbf{u}, \mathbf{v})
$$

- Huang, Shen and Buja (2009, JASA)

$$
\mathcal{P}_{1}(\mathbf{u}, \mathbf{v})=\lambda_{u} \mathcal{P}_{\mathbf{u}}(\mathbf{u}) \cdot \mathbf{v v}^{T}+\lambda_{\mathbf{v}} \mathcal{P}_{\mathbf{v}}(\mathbf{v}) \cdot \mathbf{u u}^{T}+\lambda_{\mathbf{u}} \lambda_{\mathbf{v}} \mathcal{P}_{\mathbf{u}}(\mathbf{u}) \mathcal{P}_{\mathbf{v}}(\mathbf{v})
$$

- scale invariant

$$
\mathcal{P}_{1}(c \cdot \mathbf{u}, \mathbf{v} / c)=\mathcal{P}_{1}(\mathbf{u}, \mathbf{v}), \forall c \neq 0
$$

- Hong and Lian (2013, JMVA)

$$
\mathcal{P}_{2}(\mathbf{u}, \mathbf{v})=\lambda_{u} \mathcal{P}_{\mathbf{u}}(\mathbf{u})+\lambda_{v} \mathcal{P}_{\mathbf{v}}(\mathbf{v})
$$

- not scale-invariant

"Advantages of ignoring scale invariance"

$\mathcal{P}_{2}(\mathbf{u}, \mathbf{v})=\lambda_{u} \mathcal{P}_{\mathbf{u}}(\mathbf{u})+\lambda_{v} \mathcal{P}_{\mathbf{v}}(\mathbf{v})$

- adjust the tuning parameters for varying scale
- scale-shift between \mathbf{u} and \mathbf{v}, only need one effective tuning parameter
- set $\lambda_{\mathbf{v}}=1$, only $\lambda_{\mathbf{u}}$ to be tuned
- reduce computation for tuning parameter selection

Do we lose anything?

Smooth-smooth problem

- Huang, Shen and Buja (2009):

$$
-2 \mathbf{u}^{T} \mathbf{X} \mathbf{v}+\mathbf{u}^{T}\left(\mathbf{I}+\lambda_{\mathbf{u}} \boldsymbol{\Omega}\right) \mathbf{u} \cdot \mathbf{v}^{T}\left(\mathbf{I}+\lambda_{\mathbf{v}} \boldsymbol{\Omega}\right) \mathbf{v}
$$

- Hong and Lian (2013):

$$
-2 \mathbf{u}^{T} \mathbf{X} \mathbf{v}+\mathbf{u}^{T} \mathbf{u} \cdot \mathbf{v}^{T} \mathbf{v}+\lambda_{\mathbf{u}} \mathbf{u}^{T} \boldsymbol{\Omega} \mathbf{u}+\lambda_{\mathbf{v}} \mathbf{v}^{\top} \boldsymbol{\Omega} \mathbf{v}
$$

Stationary equations

- Huang, Shen and Buja (2009):

$$
\begin{aligned}
& \mathbf{u}=\frac{1}{\sqrt{\mathbf{v}^{T}\left(\mathbf{I}+\lambda_{\mathbf{v}} \boldsymbol{\Omega}_{\mathbf{v}}\right) \mathbf{v}}} \cdot\left(\mathbf{I}+\lambda_{\mathbf{u}} \boldsymbol{\Omega}_{\mathbf{u}}\right)^{-1} \frac{\mathbf{X} \mathbf{v}}{\sqrt{\mathbf{v}^{T}\left(\mathbf{I}+\lambda_{\mathbf{u}} \boldsymbol{\Omega}_{\mathbf{v}}\right) \mathbf{v}}} \\
& \mathbf{v}=\frac{1}{\sqrt{\mathbf{u}^{T}\left(\mathbf{I}+\lambda_{\mathbf{u}} \boldsymbol{\Omega}_{\mathbf{u}}\right) \mathbf{u}}} \cdot\left(\mathbf{I}+\lambda_{\mathbf{v}} \boldsymbol{\Omega}_{\mathbf{v}}\right)^{-1} \frac{\mathbf{X}^{T} \mathbf{u}}{\sqrt{\mathbf{u}^{T}\left(\mathbf{I}+\lambda_{\mathbf{u}} \boldsymbol{\Omega}_{\mathbf{u}}\right) \mathbf{u}}}
\end{aligned}
$$

- Hong and Lian (2013):

$$
\begin{aligned}
& \mathbf{u}=\frac{1}{\sqrt{\mathbf{v}^{T} \mathbf{v}}} \cdot\left(\mathbf{I}+\frac{\lambda_{\mathbf{u}}}{\mathbf{v}^{T} \mathbf{v}} \boldsymbol{\Omega}_{\mathbf{u}}\right)^{-1} \frac{\mathbf{X} \mathbf{v}}{\sqrt{\mathbf{v}^{T} \mathbf{v}}} \\
& \mathbf{v}=\frac{1}{\sqrt{\mathbf{u}^{T} \mathbf{u}}} \cdot\left(\mathbf{I}+\frac{\lambda_{\mathbf{v}}}{\mathbf{u}^{T} \mathbf{u}} \boldsymbol{\Omega}_{\mathbf{v}}\right)^{-1} \frac{\mathbf{X}^{T} \mathbf{u}}{\sqrt{\mathbf{u}^{T} \mathbf{u}}}
\end{aligned}
$$

Confounding of scale and penalty parameter

- actual penalty parameters:
- $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}$ (Huang, Shen and Buja 2009)
- $\frac{\lambda_{u}}{\mathbf{v}^{T_{v}},}, \frac{\lambda_{v}}{\mathbf{u}^{T_{u}} \mathbf{u}}$ (Hong and Lian 2013)
- penalty parameters $\left(\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}\right)$ and scales $\left(\mathbf{u}^{T} \mathbf{u}, \mathbf{v}^{\top} \mathbf{v}\right)$ are confounded in Hong and Lian (2013)
- no confounding in Huang, Shen and Buja (2009)

Scale at convergence as a function of penalty parameter

1st consequence: difficulty in defining optimal tuning

- Huang, Shen and Buja (2009):
tuning parameter \Longrightarrow actual smoothing effect
- Hong and Lian (2013):

Scale and roughness as function of \# of iterations

 (log) path of scales(log) path of roughnesses

2nd consequence: redundant Iterations

- signal is being processed at appropriate level of smoothness, only when scale is adjusted to the right level
- most of iteration steps used to adjust the scale, not smoothness
- according to simulation, scale-adjustment uses 75% of steps
- result in much more steps to convergence than Huang, Shen and Buja (2009)
- \# of iterations (HL: 100 para., HSB: 100×100 para.)

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
HL	16.00	112.00	175.50	550.80	939.00	1853.00
HSB	5.00	7.00	10.00	9.54	12.00	14.00

3rd consequence: bad recovery of signals

$\left\llcorner_{\text {Scale-invariance in two formulations of regularized SVD }}\right.$

Sparse-smooth problem: stationary equations

- stationary equations:

$$
\begin{aligned}
& \mathbf{u}=\frac{1}{\sqrt{\mathbf{v}^{\top} \mathbf{v}}} \cdot \boldsymbol{\operatorname { s p a r s e }}\left(\frac{\mathbf{X} \mathbf{v}}{\sqrt{\mathbf{v}^{\top} \mathbf{v}}} ; \frac{\lambda_{\mathbf{u}}}{\sqrt{\mathbf{v}^{\top} \mathbf{v}}}\right) \\
& \mathbf{v}=\frac{1}{\sqrt{\mathbf{u}^{T} \mathbf{u}}} \cdot\left(\mathbf{I}+\frac{\lambda_{\mathbf{v}}}{\mathbf{u}^{T} \mathbf{u}} \boldsymbol{\Omega}\right)^{-1} \cdot \frac{\mathbf{X} \mathbf{v}}{\sqrt{\mathbf{v}^{T} \mathbf{v}}}
\end{aligned}
$$

- $\operatorname{sparse}(\mathbf{y} ; \lambda)$ is solution of

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}
$$

- still confounding of scale and penalty parameter

1st consequence: difficulty in defining the optimal tuning

scales at converging for given λ

2nd consequence: redundant Iterations

3rd consequence: "threshold-to-zero"

- $\operatorname{sparse}(\mathbf{y} ; \lambda)=\arg \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}$
- $\operatorname{sparse}(\mathbf{y} ; \lambda)=\mathbf{0}$, if λ is too large
- $\mathbf{u}=\frac{1}{\sqrt{\mathbf{v}^{\top} \mathbf{v}}} \cdot \mathbf{s p a r s e}\left(\frac{\mathbf{X}_{\mathbf{v}}}{\sqrt{\mathbf{v}^{\top} \mathbf{v}}} ; \frac{\lambda_{\mathbf{u}}}{\sqrt{\mathbf{v}^{\top} \mathbf{v}}}\right)$
- if starting with wrong scale before convergence, threshold \mathbf{u} all into zero

Solution-path given initialization with different scales

Sparse-sparse problem: stationary equations

- stationary equations:

$$
\begin{aligned}
& \mathbf{u}=\frac{1}{\sqrt{\mathbf{v}^{\top} \mathbf{v}}} \cdot \operatorname{sparse}\left(\frac{\mathbf{X} \mathbf{v}}{\sqrt{\mathbf{v}^{T} \mathbf{v}}} ; \frac{\lambda_{\mathbf{u}}}{\sqrt{\mathbf{v}^{T} \mathbf{v}}}\right) \\
& \mathbf{v}=\frac{1}{\sqrt{\mathbf{u}^{T} \mathbf{u}}} \cdot \operatorname{sparse}\left(\frac{\mathbf{X}^{T} \mathbf{u}}{\sqrt{\mathbf{u}^{T} \mathbf{u}}} ; \frac{\lambda_{\mathbf{v}}}{\sqrt{\mathbf{u}^{T} \mathbf{u}}}\right)
\end{aligned}
$$

- still confounding of scale and penalty parameter

1st consequence: difficulty in defining optimal tuning

scales at convergence given different λ

2nd consequence: redundant Iterations

(log) path of scales

path of sparsities

3rd consequence: two-sided "threshold-to-zero"

$-\mathbf{u}=\frac{1}{\sqrt{\mathbf{v}^{\top} \mathbf{v}}} \cdot \operatorname{sparse}\left(\frac{\mathbf{X}_{\mathbf{v}}}{\sqrt{\mathbf{v}^{\top} \mathbf{v}}} ; \frac{\lambda_{\mathbf{u}}}{\sqrt{\mathbf{v}^{\top} \mathbf{v}}}\right)$
$-\mathbf{v}=\frac{1}{\sqrt{\mathbf{u}^{T} \mathbf{u}}} \cdot \operatorname{sparse}\left(\frac{\mathbf{x}^{T} \mathbf{u}}{\sqrt{\mathbf{u}^{T} \mathbf{u}}} ; \frac{\lambda_{\mathbf{v}}}{\sqrt{\mathbf{u}^{T} \mathbf{u}}}\right)$

- "two-sided":
- if initial \mathbf{v} too small, \mathbf{u} is thresholded to zero
- if initial \mathbf{v} too large, \mathbf{v} is thresholded to zero
- sensitivity to initialization

Solution-path given initialization with different scales

Summary

- Matrix decomposition has wide application.
- Scale-invariance is important in the design of two-way regularization penalty.
- Consequence of ignoring scale-invariance:
- confunding of scale and penalty parameter
- \# of iterations of the algorithm
- non-flexibility of using single penalty parameter
- threshold-all-to-zero problem

Acknowledgement

- Collaborators:
- Andreas Buja (U Penn)
- Xin Gao (KAUST)
- Jianhua Hu (MD Anderson)
- Seokho Lee (Hankuk University of Foreign Studies, Korea)
- Mehdi Maadooliat (Marquette University)
- Haipeng Shen (UNC)
- Siva Tian (U Houston)
- Senmao Liu, Lan Zhou (Taxas A\&M)
- Lingsong Zhang (Purdue)
- Grants
- National Science Foundation
- King Abdullah University of Science and Technology (KAUST), Saudi Arabia

