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Singular value decomposition

SVD: X = UDV’

X (nxp)

U (nxm), D(mxm),V (pxm), m=min(n,p)
truncated SVD: X = UkaVZ—, k< m

k=1 X=duv’

Eckart-Young theorem R

min ||X — X||? subject to rank constraint to X
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One-way regularized SVD

> (u1,v1) = arg mingy [|[X —uv’ |2 + AP(v)
» functional PCA

using roughness penalty

n—1
viQu= Z{Vi_l —2vi + V,'+1}2
i=2
» sparse PCA

using sparsity-inducing penalty

n
vi=> vl
i=1
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Two-way structured data

» two-way functional data:
» row and column domains are structured
» mortality rate as a function of time and age
» functional-sparse structured data, e.g., fMRI data:
» row from temporal space, change continuously with time -
smooth
» column from spatial space, active region only a small
proportion - sparse
> checkerboard structure data:
biclustering problem
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Regularized SVD

» Standard SVD
(ug,vi) = argmin||X —uv |2
u,v
» Regularized SVD!
_ : T2
(ug,v1) = argmin||X —uv' ||z + P(u,v)

u,v
» squared-error loss can be replaced
» How do we choose P(u,v)?
» Other formulations use constrained optimization:

Allen, Witten, etc.
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Spanish mortality rate

» available in the Human Mortality Database
» each row: a year between 1908 and 2007
> each column: an age group from 0 to 110

» each cell: the mortality rate for a particular age group during
that year

» two-way functional structured
> log(x +1/2)
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3-d view of the data
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3-d view of the data (zoomed)

Mortality (log-scale)
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Age plot of the data
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Year plot of the data

Mortality (log-scale)
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First component of SVD
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Second component of SVD
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Fitted and residual plot of the rank-2 model
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Inverse problem of MEG source reconstruction

electric

intracellular
current
. (dendrite)
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Imaging methods

v

Y=XB+E
» Y € R"™*: measured MEG data (n sensors s time points).

» B € RP*S: the potential source time courses in the cortical
area (p source components, p > n).

» X € R"*P: forward operator
can be derived using a head model

E € R"*: noise

Goal: solving for B—ill-posed

v

v
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Two-way regularization

v

B=AG’ pxs

G € R®*9 contains the temporal features

v

v

A € RP*9 captures the spatial signals
»qg<s

Penalized least squares problem

. o T2
r;lGn{Hv XAGT |2+ P(A,G)}
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Desired properties
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Synthetic example
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Figure: (a) simulated source time course using a sine-exponential
function; (b) synthetical sensor time courses (SNR=6dB).
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(d) sTP (e) TWR (f) ETWR

Figure: Reconstructed time courses by different methods at the center of
the active area.
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(d) sTP (e) TWR (f) ETWR

Figure: Reconstructed time courses by different methods at an arbitrary
location near the edge of the active area (SNR=6dB).
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Synthetic example
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Figure: Overviews of brain mapping by different methods at 14 ms
(SNR=6dB).
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Two formulations of regularized SVD

Mingy [[X —uv’|[Z + P(u,v)
» Huang, Shen and Buja (2009, JASA)

P1(u,v) = A\yPy(u) - w'! + AvPy(v) - uu’ + AuAvPu(u)Py(v)

> scale invariant
Pi(c-u,v/c) =Pi(u,v), Vc #0
» Hong and Lian (2013, JMVA)

Pa(u,v) = AyPu(u) + A\, Py(v)

» not scale-invariant
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“Advantages of ignoring scale invariance”

Pa(u,v) = Ay Pu(u) + Ay Pu(v)
» adjust the tuning parameters for varying scale

> scale-shift between u and v, only need one effective tuning
parameter

> set A\, =1, only A\, to be tuned

» reduce computation for tuning parameter selection
Do we lose anything?



Two-way regularized SVD
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Smooth-smooth problem

» Huang, Shen and Buja (2009):
—2u"Xv+uT(1+X,Q)u-v (1 4+ A\Q)v

» Hong and Lian (2013):

—2u™Xv+uTu-viv+rau Qu+ A\v Qv
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Stationary equations

» Huang, Shen and Buja (2009):

1 Xv

u= (4 M)
vT(1+ 0\Q)v (1 Aufh) VT AWV
T
_ L Ay 2
u’ (1 + \Qy)u u’ (1+ \Qy)u
» Hong and Lian (2013):
1 Mo g Xv
= — (I+ =—Q
u VT ( + VTV l.l) /—VTV
1 Av 1 XTu
= (1 Q
Y VuTu ( Ty ) u'u
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Confounding of scale and penalty parameter

» actual penalty parameters:

» Ay, Av (Huang, Shen and Buja 2009)
2o v (Hong and Lian 2013)

viv’ulu

» penalty parameters (\,, \,) and scales (u"u, v7v) are
confounded in Hong and Lian (2013)

» no confounding in Huang, Shen and Buja (2009)
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Scale at convergence as a function of penalty parameter

scale of u in log-scale
scale of v in log-scale

lambda in log-scale lambda in log-scale
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1st consequence: difficulty in defining optimal tuning
» Huang, Shen and Buja (2009):

tuning parameter ——=- actual smoothing effect

» Hong and Lian (2013):

tuning parameter ————=—= actual smoothing eﬂect-“\,

scale ofu, v

black-box
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Scale and roughness as function of # of iterations
(log) path of scales (log) path of roughnesses
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2nd consequence: redundant Iterations

> signal is being processed at appropriate level of smoothness,
only when scale is adjusted to the right level

» most of iteration steps used to adjust the scale, not
smoothness

» according to simulation, scale-adjustment uses 75% of steps

> result in much more steps to convergence than Huang, Shen
and Buja (2009)

# of iterations (HL: 100 para., HSB: 100 x 100 para.)

v

Min. 1st Qu. Median Mean 3rd Qu. Max.

HL | 16.00 112.00 17550 550.80 939.00 1853.00

HSB | 5.00 7.00 10.00 9.54 12.00 14.00
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3rd consequence: bad recovery of signals
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Sparse-smooth problem: stationary equations

> stationary equations:

u= sparse( Xv . v )
VvTy VvTv VvTv
Xv

vV =

(14 -9
m Vv

» sparse(y; \) is solution of
min ||y — |13 + Al[x[|x

» still confounding of scale and penalty parameter
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1st consequence: difficulty in defining the optimal tuning

log u's scale

scales at converging for given A

7 log tuning para.

10

log v's scale

7Iog tuning para.
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2nd consequence: redundant lterations

(log) path of scales path of sparsities/roughnesses
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3rd consequence: “threshold-to-zero”

> sparse(y; \) = afg miny [ly — x|[3 + Allx][1
» sparse(y; \) =0, if \ is too large
_ 1 :
> U= e sparse(r,m)
>

if starting with wrong scale before convergence, threshold u
all into zero
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Solution-path given initialization with different scales

| v: SVD S
. | v SVD*2 b : ; !
7 | m v svD*10 P i
o E v: SVD*50 b | ! !
= H v SVD*1000 A i
O =] I H H !
&) [ ; | s
o fE .
= . ! ! .
3% T
A
I e
S e P
log tuning para.
J — J = 1 r _
SE NN I -+ DO = o /
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Sparse-sparse problem: stationary equations

> stationary equations:

u L arse( Xv . v )
g . p r ,
viv Vvliv VvTv
T
vV =

X
- sparse( -
VuTu

Av )
VuTu VuTu
» still confounding of scale and penalty parameter

u}
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1st consequence: difficulty in defining optimal tuning

scales at convergence given different A
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2nd consequence: redundant lterations

(log) path of scales path of sparsities
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3rd consequence: two-sided “threshold-to-zero”

> u:F sparse(ﬁ;m)
> v—\/f sparse(\/f;m)
> “two-sided”:

» if initial v too small, u is thresholded to zero
» if initial v too large, v is thresholded to zero

> sensitivity to initialization
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Solution-path given initialization with different scales
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Summary

» Matrix decomposition has wide application.

» Scale-invariance is important in the design of two-way
regularization penalty.
» Consequence of ignoring scale-invariance:
» confunding of scale and penalty parameter
# of iterations of the algorithm
non-flexibility of using single penalty parameter
threshold-all-to-zero problem

v vy
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