Two-way Regularized Matrix Decomposition

Jianhua Huang

Texas A&M University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

SVD and regularization

Examples of two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

SVD and regularization

Examples of two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今への

Singular value decomposition

- SVD: $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$
- ► **X** (*n* × *p*)
- ▶ U $(n \times m)$, D $(m \times m)$, V $(p \times m)$, $m = \min(n, p)$

- ► truncated SVD: $\mathbf{X} = \mathbf{U}_k \mathbf{D}_k \mathbf{V}_k^T$, $k \ll m$ k = 1: $\mathbf{X} = d\mathbf{u}\mathbf{v}^T$
- ► Eckart-Young theorem min ||**X** - **X**||² subject to rank constraint to **X**

One-way regularized SVD

 $\blacktriangleright (\mathbf{u}_1, \mathbf{v}_1) = \arg \min_{\mathbf{u}, \mathbf{v}} ||\mathbf{X} - \mathbf{u}\mathbf{v}^T||_F^2 + \lambda \mathcal{P}(\mathbf{v})$

 functional PCA using roughness penalty

$$\mathbf{v}^{T} \mathbf{\Omega} \mathbf{v} = \sum_{i=2}^{n-1} \{ v_{i-1} - 2v_i + v_{i+1} \}^2$$

 sparse PCA using sparsity-inducing penalty

$$|\mathbf{v}| = \sum_{i=1}^{n} |v_i|$$

Two-way structured data

- two-way functional data:
 - row and column domains are structured
 - mortality rate as a function of time and age
- functional-sparse structured data, e.g., fMRI data:
 - row from temporal space, change continuously with time smooth

- column from spatial space, active region only a small proportion - sparse
- checkerboard structure data: biclustering problem

Regularized SVD

Standard SVD

$$(\mathbf{u}_1, \mathbf{v}_1) = \arg\min_{\mathbf{u}, \mathbf{v}} ||\mathbf{X} - \mathbf{u}\mathbf{v}^T||_F^2$$

Regularized SVD!

$$(\mathbf{u}_1, \mathbf{v}_1) = arg \min_{\mathbf{u}, \mathbf{v}} ||\mathbf{X} - \mathbf{u}\mathbf{v}^T||_F^2 + \mathcal{P}(\mathbf{u}, \mathbf{v})$$

- squared-error loss can be replaced
- How do we choose $\mathcal{P}(\mathbf{u}, \mathbf{v})$?
- Other formulations use constrained optimization: Allen, Witten, etc.

Examples of two-way regularized SVD

SVD and regularization

Examples of two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今への

Spanish mortality rate

- available in the Human Mortality Database
- each row: a year between 1908 and 2007
- each column: an age group from 0 to 110
- each cell: the mortality rate for a particular age group during that year

- two-way functional structured
- ▶ $\log(x+1/2)$

3-d view of the data

3-d view of the data (zoomed)

Age plot of the data

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Year plot of the data

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

First component of SVD

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Second component of SVD

Fitted and residual plot of the rank-2 model

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Inverse problem of MEG source reconstruction

Imaging methods

- Y = XB + E
- ▶ $\mathbf{Y} \in \mathbf{R}^{n \times s}$: measured MEG data (*n* sensors *s* time points).
- B ∈ R^{p×s}: the potential source time courses in the cortical area (p source components, p ≫ n).

- ➤ X ∈ R^{n×p}: forward operator can be derived using a head model
- $\mathbf{E} \in \mathbf{R}^{n \times s}$: noise
- Goal: solving for B—ill-posed

Two-way regularization

$$\blacktriangleright \mathbf{B} = \mathbf{A}\mathbf{G}^T \ p \times s$$

- $\mathbf{G} \in \mathbf{R}^{s imes q}$ contains the temporal features
- $\mathbf{A} \in \mathbf{R}^{p imes q}$ captures the spatial signals
- ▶ q ≤ s

Penalized least squares problem

$$\min_{\mathbf{a},\mathbf{G}} \Big\{ \|\mathbf{Y} - \mathbf{X}\mathbf{A}\mathbf{G}^{\mathsf{T}}\|_{\mathsf{F}}^2 + \mathcal{P}(\mathbf{A},\mathbf{G}) \Big\}$$

Desired properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Synthetic example

Figure: (a) simulated source time course using a sine-exponential function; (b) synthetical sensor time courses (SNR=6dB).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Examples of two-way regularized SVD

Figure: Reconstructed time courses by different methods at the center of the active area.

Examples of two-way regularized SVD

Figure: Reconstructed time courses by different methods at an arbitrary location near the edge of the active area (SNR=6dB).

Synthetic example

Figure: Overviews of brain mapping by different methods at 14 ms (SNR=6dB).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Scale-invariance in two formulations of regularized SVD

SVD and regularization

Examples of two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two formulations of regularized SVD

$$\begin{aligned} \min_{\mathbf{u},\mathbf{v}} ||\mathbf{X} - \mathbf{u}\mathbf{v}^{T}||_{F}^{2} + \mathcal{P}(\mathbf{u},\mathbf{v}) \\ &\blacktriangleright \text{ Huang, Shen and Buja (2009, JASA)} \\ &\mathcal{P}_{1}(\mathbf{u},\mathbf{v}) = \lambda_{u}\mathcal{P}_{\mathbf{u}}(\mathbf{u}) \cdot \mathbf{v}\mathbf{v}^{T} + \lambda_{v}\mathcal{P}_{\mathbf{v}}(\mathbf{v}) \cdot \mathbf{u}\mathbf{u}^{T} + \lambda_{u}\lambda_{v}\mathcal{P}_{\mathbf{u}}(\mathbf{u})\mathcal{P}_{\mathbf{v}}(\mathbf{v}) \end{aligned}$$

$$\mathcal{P}_1(c \cdot \mathbf{u}, \mathbf{v}/c) = \mathcal{P}_1(\mathbf{u}, \mathbf{v}), \ \forall c \neq 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hong and Lian (2013, JMVA)

$$\mathcal{P}_{2}(\mathbf{u},\mathbf{v}) = \lambda_{u}\mathcal{P}_{\mathbf{u}}(\mathbf{u}) + \lambda_{v}\mathcal{P}_{\mathbf{v}}(\mathbf{v})$$

not scale-invariant

"Advantages of ignoring scale invariance"

$$\mathcal{P}_2(\mathbf{u},\mathbf{v}) = \lambda_u \mathcal{P}_{\mathbf{u}}(\mathbf{u}) + \lambda_v \mathcal{P}_{\mathbf{v}}(\mathbf{v})$$

- adjust the tuning parameters for varying scale
- scale-shift between u and v, only need one effective tuning parameter

- set $\lambda_{\mathbf{v}} = 1$, only $\lambda_{\mathbf{u}}$ to be tuned
- reduce computation for tuning parameter selection

Do we lose anything?

Smooth-smooth problem

Huang, Shen and Buja (2009):

$$-2\mathbf{u}^{\mathsf{T}}\mathbf{X}\mathbf{v}+\mathbf{u}^{\mathsf{T}}(\mathbf{I}+\lambda_{\mathbf{u}}\boldsymbol{\Omega})\mathbf{u}\cdot\mathbf{v}^{\mathsf{T}}(\mathbf{I}+\lambda_{\mathbf{v}}\boldsymbol{\Omega})\mathbf{v}$$

► Hong and Lian (2013):

$$-2\mathbf{u}^{\mathsf{T}}\mathbf{X}\mathbf{v}+\mathbf{u}^{\mathsf{T}}\mathbf{u}\cdot\mathbf{v}^{\mathsf{T}}\mathbf{v}+\lambda_{\mathsf{u}}\mathbf{u}^{\mathsf{T}}\boldsymbol{\Omega}\mathbf{u}+\lambda_{\mathsf{v}}\mathbf{v}^{\mathsf{T}}\boldsymbol{\Omega}\mathbf{v}$$

Stationary equations

Huang, Shen and Buja (2009):

$$\mathbf{u} = \frac{1}{\sqrt{\mathbf{v}^{T}(\mathbf{I} + \lambda_{\mathbf{v}} \mathbf{\Omega}_{\mathbf{v}})\mathbf{v}}} \cdot (\mathbf{I} + \lambda_{\mathbf{u}} \mathbf{\Omega}_{\mathbf{u}})^{-1} \frac{\mathbf{X}\mathbf{v}}{\sqrt{\mathbf{v}^{T}(\mathbf{I} + \lambda_{\mathbf{v}} \mathbf{\Omega}_{\mathbf{v}})\mathbf{v}}}$$
$$\mathbf{v} = \frac{1}{\sqrt{\mathbf{u}^{T}(\mathbf{I} + \lambda_{\mathbf{u}} \mathbf{\Omega}_{\mathbf{u}})\mathbf{u}}} \cdot (\mathbf{I} + \lambda_{\mathbf{v}} \mathbf{\Omega}_{\mathbf{v}})^{-1} \frac{\mathbf{X}^{T}\mathbf{u}}{\sqrt{\mathbf{u}^{T}(\mathbf{I} + \lambda_{\mathbf{u}} \mathbf{\Omega}_{\mathbf{u}})\mathbf{u}}}$$
Heng and Liap (2013):

Hong and Lian (2013):

$$\begin{split} \mathbf{u} &= \frac{1}{\sqrt{\mathbf{v}^{\top}\mathbf{v}}} \cdot (\mathbf{I} + \frac{\lambda_{u}}{\mathbf{v}^{\top}\mathbf{v}} \Omega_{u})^{-1} \frac{\mathbf{X}\mathbf{v}}{\sqrt{\mathbf{v}^{\top}\mathbf{v}}} \\ \mathbf{v} &= \frac{1}{\sqrt{\mathbf{u}^{\top}\mathbf{u}}} \cdot (\mathbf{I} + \frac{\lambda_{v}}{\mathbf{u}^{\top}\mathbf{u}} \Omega_{v})^{-1} \frac{\mathbf{X}^{\top}\mathbf{u}}{\sqrt{\mathbf{u}^{\top}\mathbf{u}}} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Confounding of scale and penalty parameter

- actual penalty parameters:
 - λ_{u}, λ_{v} (Huang, Shen and Buja 2009)
 - $\frac{\lambda_{u}}{v^{T}v}, \frac{\lambda_{v}}{u^{T}u}$ (Hong and Lian 2013)
- penalty parameters (λ_u, λ_v) and scales (u^Tu, v^Tv) are confounded in Hong and Lian (2013)

no confounding in Huang, Shen and Buja (2009)

Two-way regularized SVD

Scale at convergence as a function of penalty parameter

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

1st consequence: difficulty in defining optimal tuning

Huang, Shen and Buja (2009):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Two-way regularized SVD

Scale and roughness as function of # of iterations (log) path of scales (log) path of roughnesses

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

2nd consequence: redundant Iterations

- signal is being processed at appropriate level of smoothness, only when scale is adjusted to the right level
- most of iteration steps used to adjust the scale, not smoothness
- according to simulation, scale-adjustment uses 75% of steps
- result in much more steps to convergence than Huang, Shen and Buja (2009)
- # of iterations (HL: 100 para., HSB: 100×100 para.)

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
HL	16.00	112.00	175.50	550.80	939.00	1853.00
HSB	5.00	7.00	10.00	9.54	12.00	14.00

3rd consequence: bad recovery of signals

Two-way regularized SVD

 \square Scale-invariance in two formulations of regularized SVD

Sparse-smooth problem: stationary equations

stationary equations:

$$\begin{split} \mathbf{u} &= \frac{1}{\sqrt{\mathbf{v}^{\mathsf{T}}\mathbf{v}}} \cdot \mathsf{sparse}(\frac{\mathbf{X}\mathbf{v}}{\sqrt{\mathbf{v}^{\mathsf{T}}\mathbf{v}}}; \frac{\lambda_{u}}{\sqrt{\mathbf{v}^{\mathsf{T}}\mathbf{v}}})\\ \mathbf{v} &= \frac{1}{\sqrt{\mathbf{u}^{\mathsf{T}}\mathbf{u}}} \cdot (\mathbf{I} + \frac{\lambda_{v}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}} \mathbf{\Omega})^{-1} \cdot \frac{\mathbf{X}\mathbf{v}}{\sqrt{\mathbf{v}^{\mathsf{T}}\mathbf{v}}} \end{split}$$

sparse(y; λ) is solution of

$$\min_{\mathbf{x}} ||\mathbf{y} - \mathbf{x}||_2^2 + \lambda ||\mathbf{x}||_1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

still confounding of scale and penalty parameter

1st consequence: difficulty in defining the optimal tuning

scales at converging for given λ

2nd consequence: redundant Iterations

3rd consequence: "threshold-to-zero"

• sparse(y;
$$\lambda$$
) = arg min_x $||\mathbf{y} - \mathbf{x}||_2^2 + \lambda ||\mathbf{x}||_1$

• sparse(y;
$$\lambda$$
) = 0, if λ is too large

•
$$\mathbf{u} = \frac{1}{\sqrt{\mathbf{v}^T \mathbf{v}}} \cdot \operatorname{sparse}(\frac{\mathbf{X}\mathbf{v}}{\sqrt{\mathbf{v}^T \mathbf{v}}}; \frac{\lambda_u}{\sqrt{\mathbf{v}^T \mathbf{v}}})$$

 if starting with wrong scale before convergence, threshold u all into zero

Solution-path given initialization with different scales

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sparse-sparse problem: stationary equations

stationary equations:

$$\mathbf{u} = \frac{1}{\sqrt{\mathbf{v}^{T}\mathbf{v}}} \cdot \operatorname{sparse}(\frac{\mathbf{X}\mathbf{v}}{\sqrt{\mathbf{v}^{T}\mathbf{v}}}; \frac{\lambda_{\mathbf{u}}}{\sqrt{\mathbf{v}^{T}\mathbf{v}}})$$
$$\mathbf{v} = \frac{1}{\sqrt{\mathbf{u}^{T}\mathbf{u}}} \cdot \operatorname{sparse}(\frac{\mathbf{X}^{T}\mathbf{u}}{\sqrt{\mathbf{u}^{T}\mathbf{u}}}; \frac{\lambda_{\mathbf{v}}}{\sqrt{\mathbf{u}^{T}\mathbf{u}}})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

still confounding of scale and penalty parameter

1st consequence: difficulty in defining optimal tuning

scales at convergence given different λ

2nd consequence: redundant Iterations

3rd consequence: two-sided "threshold-to-zero"

•
$$\mathbf{u} = \frac{1}{\sqrt{\mathbf{v}^T \mathbf{v}}} \cdot \operatorname{sparse}(\frac{\mathbf{X}\mathbf{v}}{\sqrt{\mathbf{v}^T \mathbf{v}}}; \frac{\lambda_u}{\sqrt{\mathbf{v}^T \mathbf{v}}})$$

• $\mathbf{v} = \frac{1}{\sqrt{\mathbf{u}^T \mathbf{u}}} \cdot \operatorname{sparse}(\frac{\mathbf{X}^T \mathbf{u}}{\sqrt{\mathbf{u}^T \mathbf{u}}}; \frac{\lambda_v}{\sqrt{\mathbf{u}^T \mathbf{u}}})$

"two-sided":

- ▶ if initial **v** too small, **u** is thresholded to zero
- if initial v too large, v is thresholded to zero

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

sensitivity to initialization

Solution-path given initialization with different scales

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Summary

- Matrix decomposition has wide application.
- Scale-invariance is important in the design of two-way regularization penalty.
- Consequence of ignoring scale-invariance:
 - confunding of scale and penalty parameter
 - # of iterations of the algorithm
 - non-flexibility of using single penalty parameter

threshold-all-to-zero problem

Scale-invariance in two formulations of regularized SVD

Acknowledgement

- Collaborators:
 - Andreas Buja (U Penn)
 - Xin Gao (KAUST)
 - Jianhua Hu (MD Anderson)
 - Seokho Lee (Hankuk University of Foreign Studies, Korea)
 - Mehdi Maadooliat (Marquette University)
 - Haipeng Shen (UNC)
 - Siva Tian (U Houston)
 - Senmao Liu, Lan Zhou (Taxas A&M)
 - Lingsong Zhang (Purdue)
- Grants
 - National Science Foundation
 - King Abdullah University of Science and Technology (KAUST), Saudi Arabia