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SVD and regularization

Singular value decomposition

I SVD: X = UDVT

I X (n × p)

I U (n ×m), D (m ×m), V (p ×m), m = min(n, p)

I truncated SVD: X = UkDkVT
k , k � m

k = 1: X = duvT

I Eckart-Young theorem
min ‖X− X̂‖2 subject to rank constraint to X̂
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SVD and regularization

One-way regularized SVD

I (u1, v1) = arg minu,v ||X− uvT ||2F + λP(v)

I functional PCA
using roughness penalty

vTΩv =
n−1∑
i=2

{vi−1 − 2vi + vi+1}2

I sparse PCA
using sparsity-inducing penalty

|v| =
n∑

i=1

|vi |
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SVD and regularization

Two-way structured data

I two-way functional data:
I row and column domains are structured
I mortality rate as a function of time and age

I functional-sparse structured data, e.g., fMRI data:
I row from temporal space, change continuously with time -

smooth
I column from spatial space, active region only a small

proportion - sparse

I checkerboard structure data:
biclustering problem
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Regularized SVD

I Standard SVD

(u1, v1) = arg min
u,v
||X− uvT ||2F

I Regularized SVD!

(u1, v1) = arg min
u,v
||X− uvT ||2F + P(u, v)

I squared-error loss can be replaced

I How do we choose P(u, v)?

I Other formulations use constrained optimization:
Allen, Witten, etc.
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Examples of two-way regularized SVD

Spanish mortality rate

I available in the Human Mortality Database

I each row: a year between 1908 and 2007

I each column: an age group from 0 to 110

I each cell: the mortality rate for a particular age group during
that year

I two-way functional structured

I log(x + 1/2)
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3-d view of the data
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Examples of two-way regularized SVD

3-d view of the data (zoomed)
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Examples of two-way regularized SVD

Age plot of the data

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

2

2.5

Age

M
or

ta
lit

y 
(lo

g−
sc

al
e)



Two-way regularized SVD

Examples of two-way regularized SVD

Year plot of the data
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First component of SVD
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Second component of SVD
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Examples of two-way regularized SVD

Fitted and residual plot of the rank-2 model
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Inverse problem of MEG source reconstruction
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Examples of two-way regularized SVD

Imaging methods

I Y = XB + E

I Y ∈ Rn×s : measured MEG data (n sensors s time points).

I B ∈ Rp×s : the potential source time courses in the cortical
area (p source components, p � n).

I X ∈ Rn×p: forward operator
can be derived using a head model

I E ∈ Rn×s : noise

I Goal: solving for B—ill-posed
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Examples of two-way regularized SVD

Two-way regularization

I B = AGT p × s

I G ∈ Rs×q contains the temporal features

I A ∈ Rp×q captures the spatial signals

I q ≤ s

Penalized least squares problem

min
a,G

{
‖Y − XAGT‖2F + P(A,G)

}
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Examples of two-way regularized SVD

Desired properties

(a) Spatial focality (b) Temporal smoothness
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Synthetic example
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(a) Simulated source time
courses
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(b) Simulated sensor signals

Figure: (a) simulated source time course using a sine-exponential
function; (b) synthetical sensor time courses (SNR=6dB).
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(a) MNE (b) MCE (c) L1L2

(d) STP (e) TWR (f) ETWR

Figure: Reconstructed time courses by different methods at the center of
the active area.
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Examples of two-way regularized SVD

(a) MNE (b) MCE (c) L1L2

(d) STP (e) TWR (f) ETWR

Figure: Reconstructed time courses by different methods at an arbitrary
location near the edge of the active area (SNR=6dB).
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Examples of two-way regularized SVD

Synthetic example

(a) Truth (b) MNE (c) MCE

(d) L1L2 (e) TWR (f) ETWR

Figure: Overviews of brain mapping by different methods at 14 ms
(SNR=6dB).



Two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

SVD and regularization

Examples of two-way regularized SVD

Scale-invariance in two formulations of regularized SVD



Two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

Two formulations of regularized SVD

minu,v ||X− uvT ||2F + P(u, v)

I Huang, Shen and Buja (2009, JASA)

P1(u, v) = λuPu(u) · vvT + λvPv(v) · uuT + λuλvPu(u)Pv(v)

I scale invariant

P1(c · u, v/c) = P1(u, v), ∀c 6= 0

I Hong and Lian (2013, JMVA)

P2(u, v) = λuPu(u) + λvPv(v)

I not scale-invariant
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Scale-invariance in two formulations of regularized SVD

“Advantages of ignoring scale invariance”

P2(u, v) = λuPu(u) + λvPv(v)

I adjust the tuning parameters for varying scale

I scale-shift between u and v, only need one effective tuning
parameter

I set λv = 1, only λu to be tuned

I reduce computation for tuning parameter selection

Do we lose anything?
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Scale-invariance in two formulations of regularized SVD

Smooth-smooth problem

I Huang, Shen and Buja (2009):

−2uTXv + uT (I + λuΩ)u · vT (I + λvΩ)v

I Hong and Lian (2013):

−2uTXv + uTu · vTv + λuuTΩu + λvvTΩv
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Scale-invariance in two formulations of regularized SVD

Stationary equations

I Huang, Shen and Buja (2009):

u =
1√

vT (I + λvΩv)v
· (I + λuΩu)−1

Xv√
vT (I + λvΩv)v

v =
1√

uT (I + λuΩu)u
· (I + λvΩv)−1

XTu√
uT (I + λuΩu)u

I Hong and Lian (2013):

u =
1√
vTv

· (I +
λu

vTv
Ωu)−1

Xv√
vTv

v =
1√
uTu

· (I +
λv

uTu
Ωv)−1

XTu√
uTu
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Scale-invariance in two formulations of regularized SVD

Confounding of scale and penalty parameter

I actual penalty parameters:

I λu, λv (Huang, Shen and Buja 2009)

I λu

vT v ,
λv

uT u (Hong and Lian 2013)

I penalty parameters (λu, λv) and scales (uTu, vTv) are
confounded in Hong and Lian (2013)

I no confounding in Huang, Shen and Buja (2009)
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Scale-invariance in two formulations of regularized SVD

Scale at convergence as a function of penalty parameter
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Scale-invariance in two formulations of regularized SVD

1st consequence: difficulty in defining optimal tuning

I Huang, Shen and Buja (2009):

I Hong and Lian (2013):
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Scale-invariance in two formulations of regularized SVD

Scale and roughness as function of # of iterations
(log) path of scales (log) path of roughnesses
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Scale-invariance in two formulations of regularized SVD

2nd consequence: redundant Iterations

I signal is being processed at appropriate level of smoothness,
only when scale is adjusted to the right level

I most of iteration steps used to adjust the scale, not
smoothness

I according to simulation, scale-adjustment uses 75% of steps

I result in much more steps to convergence than Huang, Shen
and Buja (2009)

I # of iterations (HL: 100 para., HSB: 100× 100 para.)

Min. 1st Qu. Median Mean 3rd Qu. Max.

HL 16.00 112.00 175.50 550.80 939.00 1853.00

HSB 5.00 7.00 10.00 9.54 12.00 14.00



Two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

3rd consequence: bad recovery of signals
(HL: 100 para., HSB: 100× 100 para.)
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Scale-invariance in two formulations of regularized SVD

Sparse-smooth problem: stationary equations

I stationary equations:

u =
1√
vTv

· sparse(
Xv√
vTv

;
λu√
vTv

)

v =
1√
uTu

· (I +
λv

uTu
Ω)−1 · Xv√

vTv

I sparse(y;λ) is solution of

min
x
||y − x||22 + λ||x||1

I still confounding of scale and penalty parameter
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Scale-invariance in two formulations of regularized SVD

1st consequence: difficulty in defining the optimal tuning

scales at converging for given λ



Two-way regularized SVD

Scale-invariance in two formulations of regularized SVD

2nd consequence: redundant Iterations

(log) path of scales path of sparsities/roughnesses
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Scale-invariance in two formulations of regularized SVD

3rd consequence: “threshold-to-zero”

I sparse(y;λ) = arg minx ||y − x||22 + λ||x||1
I sparse(y;λ) = 0, if λ is too large

I u = 1√
vT v
· sparse( Xv√

vT v
; λu√

vT v
)

I if starting with wrong scale before convergence, threshold u
all into zero
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Scale-invariance in two formulations of regularized SVD

Solution-path given initialization with different scales
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Scale-invariance in two formulations of regularized SVD

Sparse-sparse problem: stationary equations

I stationary equations:

u =
1√
vTv

· sparse(
Xv√
vTv

;
λu√
vTv

)

v =
1√
uTu

· sparse(
XTu√
uTu

;
λv√
uTu

)

I still confounding of scale and penalty parameter
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Scale-invariance in two formulations of regularized SVD

1st consequence: difficulty in defining optimal tuning

scales at convergence given different λ
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Scale-invariance in two formulations of regularized SVD

2nd consequence: redundant Iterations

(log) path of scales path of sparsities
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Scale-invariance in two formulations of regularized SVD

3rd consequence: two-sided “threshold-to-zero”

I u = 1√
vT v
· sparse( Xv√

vT v
; λu√

vT v
)

I v = 1√
uT u
· sparse( XT u√

uT u
; λv√

uT u
)

I “two-sided”:
I if initial v too small, u is thresholded to zero
I if initial v too large, v is thresholded to zero

I sensitivity to initialization
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Scale-invariance in two formulations of regularized SVD

Solution-path given initialization with different scales
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Scale-invariance in two formulations of regularized SVD

Summary

I Matrix decomposition has wide application.

I Scale-invariance is important in the design of two-way
regularization penalty.

I Consequence of ignoring scale-invariance:
I confunding of scale and penalty parameter
I # of iterations of the algorithm
I non-flexibility of using single penalty parameter
I threshold-all-to-zero problem
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Scale-invariance in two formulations of regularized SVD
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