Analytical Approaches to Targeted Sub-sampling Designs with Longitudinal Continuous Response Data

> Jonathan S. Schildcrout Department of Biostatistics Vanderbilt University

> > June 3, 2014

Motivation

- Availability of administrative databases, cohort study data, electronic medical records data is on the rise.
- These resource could be used to address novel study hypotheses.
- Often, we need to collect an exposure or confounder and ascertainment costs limit sample size.
 - Analysis of blood samples required for biomarker research
 - Manual chart reviews required for EMR research
 - Recontacting patients and additional clinic visits may be required for cohort studies

Motivation (cont.)

- Genetic determinants of statin effectiveness.
 - Longitudinal lipids (LDL) data on 1000s of patients on statins for years.
 - Most effective drug / dose required to lower LDL to normal range is unknown
 - It is common to study genetic determinants but this is still expensive.
 - ★ Q1: If we can analyze blood samples on a subset of individuals, who should we choose?
 - ★ Q2: Once we pick the (biased) sample, how do we analyze the data so that we can generalize results to the entire population.
- Designs discussed today require retrospective exposure ascertainment
- Interest is in a continuous, longitudinal outcome that is also used to develop the sampling scheme
- Similar in spirit to other epidemiological designs (e.g., case-control, case-cohort) because who we observe depends on response values.

イロト 人間ト イヨト イヨト

Childhood Asthma Management Program (CAMP)

- Examined long term effects of anti-inflammatory meds on lung growth in children with mild to moderate asthma.
- 1041 children in eight cities were randomized to one of two anti-inflammatory medications or to placebo.
- A primary aim was to compare lung function at the end of the study period.
- For the primary endpoint, there was no observed treatment effect

CAMP (cont.)

- Genetic ancillary substudies
 - Sought to examine genetic factors for asthma severity and lung function
 - ► To conduct such analyses, genotype data were ascertained retrospectively ⇒ additional costs.
 - Obtained genetic data for inflammatory cytokines in nearly all kids.
 - \star Only 555 kids data are available for loci of the IL-10 cytokine.
- In other studies, retrospective ascertainment of a key exposure would limit sample size.
 - Outcome dependent sampling (ODS) designs are known to be highly efficient relative to random sampling designs.

CAMP Analysis

- Analytical goal
 - To examine FVC trajectories over the course of 4 years of followup for those with and without at least one variant allele on a locus of the IL 10 cytokine.
- The target, population model
 - Linear mixed effects model that includes
 - * Fixed effects: time since randomization, presence/absence of the variant allele, their interaction, and potential confounders.
 - * Random Effects: intercept and slope for time
- We use the CAMP data to evaluate study designs / estimation procedures
 - FVC and covariate data are available for 555 kids
 - \blacktriangleright Genotype data are expensive to ascertain \Rightarrow sample size limited to \sim 250 children

The approach...

- Subsample individuals from a cohort based on features of the response vectors.
 - Calculate summary statistics from the response vectors
 - Use summary statistics to define sampling strata
 - Conduct a stratified sampling approach
- Conduct statistical analyses that acknowledge the biased sampling design
 - Ascertainment corrected (conditional) maximum likelihood
 - MI extensions that use unsampled subject
- Design combined with analysis procedures can be highly efficient compared to standard designs.

Outline

- Population model
- A class of ODS designs for continuous, longitudinal data
- Analysis
 - Ascertainment corrected maximum likelihood
 - Extension from ACML to MI
 - Direct MI
- Relative efficiency of designs/estimation procedures via simulations
- CAMP data
- Summary

The population model

- N subjects in the original cohort (representative of the target population)
- The random intercept and slope linear mixed effect model of Laird and Ware (1982).

$$\mathbf{Y}_{i} = \mathbf{X}_{i}\boldsymbol{\beta} + \mathbf{Z}_{i}\mathbf{b}_{i} + \boldsymbol{\epsilon}_{i} \tag{1}$$

- $X_i : n_i \times p$ design matrix for the fixed effects,
- β: p-vector of fixed-effect coefficients
- Z_i : $n_i \times q$ design matrix for the random effects.
- $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$
- $\epsilon_i \sim N(0, \mathbf{\Sigma})$: we assume $\mathbf{\Sigma} = \sigma^2 \mathbf{I}_{n_i}$

The population model for CAMP

- Fixed effects: $\mathbf{X}_i = [\mathbf{1}, \mathbf{T}_i, \mathbf{X}_{ei}, \mathbf{T}_i \mathbf{X}_{ei}, \mathbf{X}_{oi}]$
 - ▶ $\mathbf{T}_i = \{T_{ij}\}_{j \in 1,2,...,n_i}$: vector of times subject *i* was observed
 - ► **X**_{ei}: expensive, time-invariant target variable
 - ► X_{oi}: matrix of pre-existing / inexpensive confounders
- $\mathbf{Z}_i = [\mathbf{1}, \mathbf{T}_i]$

• $\mathbf{b}_i = (b_{0i}, b_{1i}) \sim N_2(\mathbf{0}, \mathbf{D})$

D_i is the 2 × 2 covariance matrix that contains the variance components (σ₀², σ₁²) along the diagonal, and the covariance ρ ⋅ σ₀ ⋅ σ₁ in the off diagonal.

$$Y_{ij} = \beta_0 + \beta_t t_{ij} + \beta_e x_{ei} + \beta_{te} t_{ij} x_{ei} + \mathbf{x}_{oij} \boldsymbol{\beta}^o + b_{0i} + b_{1i} t_{ij} + e_{ij}$$

The population model for CAMP

• The multivariate density for this model can be written,

$$f(\mathbf{Y}_{i} \mid \mathbf{X}_{i}; \boldsymbol{\theta}) = (2\pi)^{-n_{i}/2} |\mathbf{V}_{i}|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{Y}_{i} - \boldsymbol{\mu}_{i})^{t} \mathbf{V}_{i}^{-1}(\mathbf{Y}_{i} - \boldsymbol{\mu}_{i})\right\}$$

where $\boldsymbol{\theta} = (\boldsymbol{\beta}, \sigma_{0}, \sigma_{1}, \rho), \ \boldsymbol{\mu}_{i} = \mathbf{X}_{i} \boldsymbol{\beta}, \ \mathbf{V}_{i} = \mathbf{Z}_{i} \mathbf{D}_{i} \mathbf{Z}_{i}^{t} + \sigma^{2} \mathbf{I}.$

• With a random / representative sample of N_s subjects, inferences could be made by maximizing the log-likelihood

$$l(\boldsymbol{\theta}; \mathbf{Y}, \mathbf{X}) = \sum_{i=1}^{N_s} l_i(\boldsymbol{\theta}; \mathbf{Y}_i, \mathbf{X}_i) = \sum_{i=1}^{N_s} log \ f(\mathbf{Y}_i \mid \mathbf{X}_i; \boldsymbol{\theta}).$$

A class of ODS designs

- X_{ei} is expensive: can only collect it on a subset of subjects.
- Subsample individuals based on features or a summary of their available data: Q_i .
- We will discuss, $Q_i = \mathbf{W}_i \mathbf{Y}_i$ (linear in the response).

•
$$\mathbf{W}_i = \frac{1}{n_i} \mathbf{1}, Q_i$$
 is an average.

•
$$\mathbf{X}_{Ti} = (\mathbf{1}, \mathbf{T}_i)$$
 and $\mathbf{W}_i = (\mathbf{X}_{Ti}^t \mathbf{X}_{Ti})^{-1} \mathbf{X}_{Ti}^t$,

- ***** \mathbf{Q}_i : intercept and slope of subject *i*'s regression of \mathbf{Y}_i on \mathbf{T}_i
- ★ Q_i[1]: intercept
- ★ Q_i[2]: slope

A class of ODS designs (cont.)

- Choice of Q_i determines the parameters that are estimated efficiently.
- Split the distribution of Q_i into regions
- Conduct a stratified sampling procedure s.t.

$$pr(S_i = 1 \mid \mathbf{Y}_i, \mathbf{X}_i) = pr(S_i = 1 \mid q_i \in R^k) = \pi(q_i \in R^k)$$

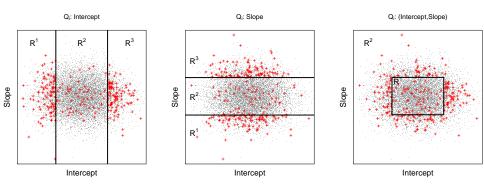
• In the univariate Q_i case,

$$\pi(q_i) = \left\{ egin{array}{ll} \pi(q_i \in R^1), & q_i \leq k_1 \ \pi(q_i \in R^2), & k_1 < q_i \leq k_2 \ \pi(q_i \in R^3), & q_i > k_2. \end{array}
ight.$$

Oversampling towards the extremes of $Q_i \rightarrow$ efficiency improvements.

• This also applies to bivariate **Q**_i

ODS designs based on subject-specific linear regressions



- Oversample relatively 'informative' subjects for the estimation targets.
- Choice of Q_i is a reflection of who you think is informative

Analyses that acknowledge the ODS designs

- We observe a biased sample.
- How to analyze the data so that inferences generalize?
 - Ascertainment corrected likelihoood
 - MI extensions

An ascertainment corrected likelihood

 If f(Y_i | X_i; θ) is the MV density for subject i under random sampling from a population, a density for those who are included in the ODS is given by

$$f(\mathbf{Y}_{i} \mid \mathbf{X}_{i}, S_{i} = 1; \boldsymbol{\theta}) = \frac{\pi(q_{i})f(\mathbf{Y}_{i} \mid \mathbf{X}_{i}; \boldsymbol{\theta})}{pr(S_{i} = 1 \mid \mathbf{X}_{i}; \boldsymbol{\theta})}$$
$$= \frac{\pi(q_{i})f(\mathbf{Y}_{i} \mid \mathbf{X}_{i}; \boldsymbol{\theta})}{\sum_{k=1}^{K} \pi(q_{i} \in R^{k})pr(q_{i} \in R^{k} \mid \mathbf{X}_{i}; \boldsymbol{\theta})}$$

where q_i is subject *i*'s observed value of the sampling variable Q_i .

An ascertainment corrected likelihood

 If a total of N_s subjects are selected into the ODS, the ascertainment corrected log-likelihood is given by,

$$l^{C}(oldsymbol{ heta}; \mathbf{Y}, \mathbf{X}) = \sum_{i=1}^{N_{s}} \left[l_{i}(oldsymbol{ heta}; \mathbf{Y}_{i}, \mathbf{X}_{i}) - log \left\{ \underbrace{\sum_{k=1}^{K} \pi(q_{i} \in R^{k}) \int_{R^{k}} f(q_{i} \mid \mathbf{X}_{i}; oldsymbol{ heta}) dq_{i}}_{AC_{i}}
ight\}
ight],$$

where AC_i is an ascertainment correction.

- Carroll et al (1995) and Lawless et al (1999) refer to this conditional likelihood as the complete data (CD) likelihood
- We are not exploiting the incomplete data from subjects in whom X_{ei} was not observed.

17 / 32

An ascertainment correct likelihood

• Since $Q_i = \mathbf{W}_i \mathbf{Y}_i$ is a linear function of the response profile.

$$\mathbf{Y}_i \mid \mathbf{X}_i \sim \mathcal{N}(oldsymbol{\mu}_i, oldsymbol{\mathsf{V}}_i) \Rightarrow \mathcal{Q}_i \mid \mathbf{X}_i \sim \mathcal{N}(oldsymbol{\mu}_{qi}, \Sigma_{qi})$$

where $\mu_{qi} = \mathbf{W}_i \mu_i$ and $\Sigma_{qi} = \mathbf{W}_i \mathbf{V}_i \mathbf{W}_i^t$.

• If Q_i is univariate, $\mu_{qi} = \mu_{qi}$ and $\Sigma_{qi} = \sigma_{qi}^2$, and we can write

$$AC_{i} = \sum_{k=1}^{K} \pi(q_{i} \in R^{k}) \left\{ F_{Q_{i}|\mathbf{X}_{i}}(k_{k}) - F_{Q_{i}|\mathbf{X}_{i}}(k_{k-1}) \right\}$$

where $F_{Q_i|\mathbf{X}_i}(c)$ is the cumulative distribution function.

Ascertainment Corrected Maximum Likelihood Estimation

• Score equation for the ascertainment corrected likelihood ,

$$\frac{\partial I_i^c}{\partial \theta} = \frac{\partial I_i}{\partial \theta} - \frac{\partial AC_i}{\partial \theta} \cdot [AC_i]^{-1}$$

where $\frac{\partial l_i}{\partial \theta}$ is the derivative of the standard log-likelihood. • For univariate Q_i , score function is given by the equations

$$\frac{\partial l_i^c}{\partial \beta} = \frac{\partial l_i}{\partial \beta} + \left[\frac{1}{\sigma_{qi}} \frac{\partial \mu_{qi}}{\partial \beta} \sum_{k=1}^{K-1} \left\{ \pi(R^{k+1}) - \pi(R^k) \right\} \cdot \phi\left(\frac{k_k - \mu_{qi}}{\sigma_{qi}}\right) \right] \cdot [AC_i]^{-1}$$

for fixed effect parameters $oldsymbol{eta}$ and

$$\frac{\partial l_i^c}{\partial \alpha_m} = \frac{\partial l_i}{\partial \alpha_m} + \left[\frac{1}{\sigma_{qi}^2} \frac{\partial \sigma_{qi}}{\partial \alpha_m} \sum_{k=1}^{K-1} \left\{ \pi(R^{k+1}) - \pi(R^k) \right\} (k_k - \mu_{qi}) \cdot \phi\left(\frac{k_k - \mu_{qi}}{\sigma_{qi}}\right) \right] \cdot [AC]^{-1}$$

for variance component parameters in $oldsymbol{lpha}=(\sigma_0,\sigma_1,
ho)$

Ascertainment Corrected Maximum Likelihood Estimation

• Since all parameters in α are subject to constraints e.g., variance components and variances must be positive and ρ must fall within [-1,1], for our analyses, we transform α and estimate the following parameters

$$\boldsymbol{\alpha} = (\alpha_0, \alpha_1, \alpha_{\rho}) = (\log(\sigma_0), \log(\sigma_1), \log\{(1-\rho)/(1+\rho)\}).$$

Multiple Imputation approaches

- The ACML approach does not exploit any of the available data from those in whom X_{ei} was not sampled.
- MI approaches may be able to recover some of that information
- Two MI approaches
 - an extension of the CD analysis
 - a direct MI approach
- To conduct imputation, we need the model for [x_{ei} | x_{oi}, y_i, S_i = 0] but from our design, we know

$$pr(x_{ei} \mid \mathbf{x}_{oi}, \mathbf{y}_i, S_i = 0) = pr(x_{ei} \mid \mathbf{x}_{oi}, \mathbf{y}_i, S_i = 1)$$
$$= pr(x_{ei} \mid \mathbf{x}_{oi}, \mathbf{y}_i).$$

so it's not that bad.

Multiple Imputation approaches (cont): Binary X_{ei}

- Complete Data Analysis then MI (CD+MI)
 - Conduct the CD analysis using ACML
 - Use results to build the model $pr(x_{ei} | \mathbf{x}_{oi}, \mathbf{y}_i, S_i = 0)$
 - General location family of imputation models
- Direct MI (D-MI)
 - Directly impute X_{ei} by building the model from the sampled subjects
 - Imputation by chained equations
- Why not always do D-MI?
 - Decision should be made on what you believe you can do well.
 - If using MI, the MI model needs to be correct.
 - ★ With D-MI, we are attempting to impute a time-invariant exposure with longitudinal data.
 - * Can be non-trivial if distributional assumptions not correct
 - If assumptions are correct, and with balanced and complete data, D-MI imputation model has the same form as linear or quadratic discriminant analysis.

Multiple Imputation approaches (cont): Binary X_{ei}

• CD+MI approach:

$$\frac{pr(X_{ei} = 1 \mid \mathbf{x}_{oi}, \mathbf{y}_{i}, S_{i} = 0)}{pr(X_{ei} = 0 \mid \mathbf{x}_{oi}, \mathbf{y}_{i}, S_{i} = 0)} = \frac{f(\mathbf{y}_{i} \mid X_{ei} = 1, \mathbf{x}_{oi}, S_{i} = 1)}{f(\mathbf{y}_{i} \mid X_{ei} = 0, \mathbf{x}_{oi}, S_{i} = 1)} \\ \cdot \frac{pr(X_{ei} = 1 \mid \mathbf{x}_{oi}, S_{i} = 1)}{pr(X_{ei} = 0 \mid \mathbf{x}_{oi}, S_{i} = 1)}$$

- First term on rhs comes directly from ACML analysis
- Second term is not totally simple because we've done biased sampling which can induce unintuitive relationships

$$\frac{pr(X_{ei} = 1 \mid \mathbf{x}_{oi}, S_i = 1)}{pr(X_{ei} = 0 \mid \mathbf{x}_{oi}, S_i = 1)} = \frac{pr(S_i = 1 \mid X_{ei} = 1, \mathbf{x}_{oi})}{pr(S_i = 1 \mid X_{ei} = 0, \mathbf{x}_{oi})} \cdot \frac{pr(X_{ei} = 1 \mid \mathbf{x}_{oi})}{pr(X_{ei} = 0 \mid \mathbf{x}_{oi})}.$$

- First term on rhs comes from the ACML analysis
- It can be used as an offset in an offsetted logistic regression analysis

Recap...

- Described a class of very simple ODS study designs for longitudinal continuous response data
 - Summarize response vector or profile based on key features.
 - ► Split *Q_i* into regions (coarsening) and sample with equal probability within each region
- Described a relatively simple ascertainment corrected ML approach to estimation and two MI extensions
- Expectation is that sampling towards the extremes of the distribution should lead to efficiency gains

Data generating model

- N=750 subjects with $n_i = n = 10$ observations.
- Population model (at time *j*):

$$Y_{ij} = \beta_0 + \beta_t t_{ij} + \beta_g g_i + \beta_{gt} g_i t_{ij} + \beta_c c_i + b_{0i} + b_{1i} t_{ij} + \epsilon_{ij}.$$
(2)

- $\mathbf{t}_i = \{t_{i1}, \dots, t_{in_i}\}$: equally spaced times ranging from -2 to 2.
- C_i : binary with $pr(C_i = 1) = 0.5$.
- G_i : binary with $pr(G_i = 1 | C_i = 1) = 0.4 + 0.15c_i$. X_{ei} from before.
- $(\beta_0, \beta_g, \beta_t, \beta_{gt}, \beta_c) = (5, -2.5, 1.0, 0.75, 1)$
- $\mathbf{b}_i = (b_{0i}, b_{1i})^t \sim N(\mathbf{0}, \mathbf{D})$ with variance components $(\sigma_0^2 = 5, \sigma_1^2 = 1)$ and with correlation parameter $\rho = 0$.

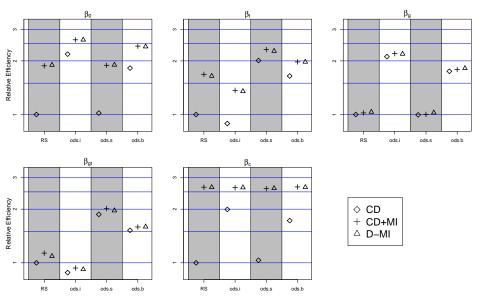
•
$$\epsilon_{ij} \sim N(0, \sigma^2)$$
 with σ set to 5.

Study Designs and Sampling

- Sample approximately 250 individuals from the original cohort into the proposed substudy.
- Consider 4 total designs
 - Random sampling (RS, standard ML analysis) and three ODS designs based on Q_i:
 - Intercept: ods.i
 - Slope: ods.s
 - Intercept and slope: ods.b
 - Each design is analyzed with either a CD analysis or two MI analyses
 - 12 design by analysis procedure combinations
 - $\blacktriangleright\,$ Sample \sim 70 from the central region and \sim 180 from outlying regions.
 - Regions are defined so that $pr(S_i = 1) = 1$ if in the outlying region.

イロト イポト イヨト イヨト 二日

Parameter Estimation Efficiency

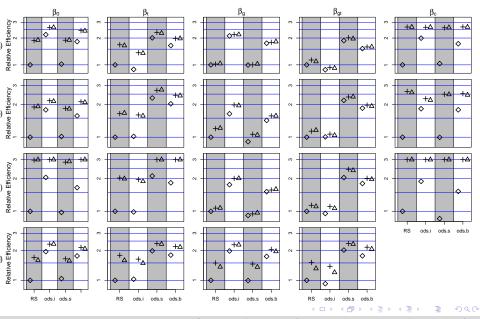


Targeted Subsampling from Existing Cohorts

3 June 3, 2014 27 / 32

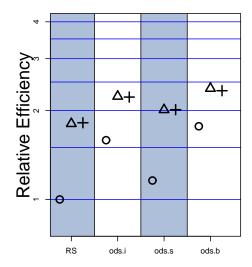
э.

Parameter Estimation Efficiency



Targeted Subsampling from Existing Cohorts

End of Study Predicted Value Efficiency



CAMP

Table: Demographic Characteristics of the CAMP Study Cohort. Continous variables are summarized with the 10th, 50th, 90th percentiles, and categorical variables with proportions.

Variable	Summary		
Cohort size (N)	555		
Age at randomization (years)	6.23, 8.81, 11.71		
Male gender	0.65		
Black race	0.10		
Other (non-caucasian) race	0.26		
Randomized treatment			
Placebo	0.50		
Budesonide	0.32		
Nedocromil	0.17		
IL-10 Variant Allele	0.50		
Observations per subject	9, 10, 10		
Follow-up time (years)	3.85, 3.99, 4.1		
Post BD Percent Predicted	92, 105, 116		

•□▶ < □▶ < □▶</p>

CAMP: Summary from 100 replicates

Variable	RS		ods.s		ods.i	
	CD	CD+MI	CD	CD+MI	CD	CD+MI
Intercept	104.95	105.15	105.90	105.19	104.45	105.28
	(2.07)	(1.59)	(2.00)	(1.57)	(1.60)	(1.41)
Time (per year)	0.12	0.09	0.15	0.10	-0.05	0.10
	(0.23)	(0.19)	(0.17)	(0.16)	(0.22)	(0.18)
IL10 SNP	-1.50	-1.68	-2.07	-2.00	-1.72	-1.96
	(1.71)	(1.71)	(1.63)	(1.62)	(1.30)	(1.30)
Time by IL10	-0.34	-0.29	-0.33	-0.31	-0.36	-0.31
	(0.33)	(0.31)	(0.24)	(0.24)	(0.30)	(0.29)
 Mala (famala)	0.00	1 10	1 46	1 10	0.62	1 16
Male (vs female)	-0.98	-1.19	-1.46	-1.12	-0.63	-1.16
	(1.08)	(0.73)	(1.07)	(0.72)	(0.85)	(0.72)

-

・ロト ・回ト ・ヨト

Summary

- Increasingly we are in situations where we may have some but not all of the data needed to address a question... we need to collect the missing pieces of data... this is expensive!
- With limited study resources, efficient designs are crucial.
- Our designs sample based on features of the response vector Q_i .
- Circumstances for which we gain efficiency makes sense
- Efficiency improvements can be very large.
- Limitations/future work
 - Sensitivity to different flavors of misspecification (MI model, likelihood)
 - Extensions to
 - ★ Different response distributions
 - ★ Multivariate longitudinal data
 - * Sampling on an auxiliary variable dynamically
 - Sampling adaptively (i.e., altering the study design after doing interim analyses)
 - \star etc.