

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

A. Linero and M. Daniels

UF, UT-Austin

SRC 2014, Galveston, TX

UF. UT-Austin

A. Linero and M. Daniels

1 Background

- 2 Working model
- 3 Extrapolation distribution
- 4 Analysis of Schizophrenia Trial

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF. UT-Austin

Notation

- y: full data response
- y_{mis}: missing data
- *y*_{obs}: observed data
- r: missingness indicators
- *S*: number of observed responses

•
$$p_s(\cdot) = p(\cdot|S = s)$$

$$\bar{Y}_s = (Y_1, \ldots, Y_s)$$

J observation times

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF, UT-Austin

< 17 >

Quick Review of missing data I

- nonignorable missingness: need to model p(y, s)
 - ignorable
 - missingness is MAR
 - distinct parameters for $p(y|\theta)$ and $p(S|y,\gamma)$
 - a priori independence
- of interest

$$p(y|\omega) = \int p(y|s;\omega) dF(s;\omega)$$

Image: Image:

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF, UT-Austin

Quick Review of missing data II

extrapolation factorization:

$$p(y, s; \omega) = p(y_{\textit{mis}}|y_{\textit{obs}}, s; \omega)p(y_{\textit{obs}}, s; \omega)$$

- unidentified parameters/sensitivity analysis/informative priors (NAS 2010 report)
 - not possible with parametric SM and SPM

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF. UT-Austin

General approach

$$p(y, s; \omega) = p(y_{\textit{mis}}|y_{\textit{obs}}, s; \omega)p(y_{\textit{obs}}, s; \omega)$$

- specify a 'working model' for the joint distribution of the responses and the dropout process (S)
- extract the observed data model from this working model
- identify the extrapolation distribution using priors grounded off of identifying restrictions

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF. UT-Austin

Why this approach?

- avoids parametric assumptions on the observed data distribution
- will scale up in a reasonable way
- allows sensitivity parameters
- allows for fair characterization of uncertainty since within the Bayesian paradigm (which offers advantages over semiparametric doubly robust approaches)

What is a 'Working model'? I

We begin by specifying a *working model* for the joint distribution of the response and dropout processes.

Definition

For a model $p(y, s \mid \omega)$, a model $p^*(y, s \mid \omega)$ is called a *working model* if for all $s \in \{1, 2, ..., J\}$,

$$p(y_{obs}, s \mid \omega) = \int p^{\star}(y_{obs}, y_{mis}, s \mid \omega) \, dy_{mis}.$$
 (1)

A given specification of $p^{\star}(y, s \mid \omega)$ identifies $p(y, s \mid \omega)$ only up to $p(y_{obs}, s \mid \omega)$, leaving $p(y_{mis} \mid y_{obs}, s, \omega)$ unidentified.

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF, UT-Austin

<ロ> <同> <同> < 回> < 回>

(日) (同) (三) (

What is a 'Working model'? II

For the purposes of likelihood based inference, it suffices to fit $p^{\star}(y, s | \omega)$ to the data.

Proposition

A model $p(y, s \mid \omega)$ and corresponding working model $p^*(y, s \mid \omega)$ have the same observed data likelihood.

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF, UT-Austin

Implications of the working model

- **1** We can focus on specifying p^* to fit the data well without affecting the extrapolation distribution $p(y_{mis}|y_{obs}, s, \omega)$.
- 2 often easier conceptually to design p^* to induce desired sharing of information across dropout times without needing to take precautions in leaving the extrapolation distribution unidentified rather than specifying p directly.
- 3 also convenient because it allows us to specify a single model of dimension J (as opposed to for (\bar{Y}_s, S))
- 4 For computational purposes, Y_{mis} may be imputed via data augmentation using p^* rather than p, which is substantially simpler.

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF. UT-Austin

Form of the 'Working model' I

• We take p^* to be a mixture of models as follows

- $f(y|\theta_1)$ model for the outcome process
- g(s|y, θ₂) model for the dropout processes conditional on the outcome process

$$p^{\star}(y,s|\omega) = \int f(y|\theta_1)g(s|y,\theta_2) F(d\theta).$$

UF. UT-Austin

- distribution of F is modeled as a Dirichlet process with (parameters) base distribution H and mass $\alpha > 0$
- specify g(s|y, θ₂) as MAR so resulting working model is a mixture of MAR models

A. Linero and M. Daniels

Form of the 'Working model' II

 specification on previous slide is equivalent to the "stick-breaking" construction (Sethuraman, 1994), which shows the Dirichlet process mixture is a prior on latent class models,

$$p^{\star}(y,s|\boldsymbol{\omega}) = \sum_{k=1}^{\infty} \beta_k f(y|\boldsymbol{\theta}_1^{(k)}) g(s|y,\boldsymbol{\theta}_2^{(k)}), \qquad (2)$$

イロト イヨト イヨト

where $\beta_k = \beta'_k \prod_{j < k} (1 - \beta'_j)$, $\beta'_j \sim \text{Beta}(1, \alpha)$, and $\theta_k \stackrel{iid}{\sim} H(d\theta)$.

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF, UT-Austin

Choice of the models in the 'Working model'

- $f(y|\theta_1)$ a normal kernel (for continous data)
- $g(s|y, \theta_2)$: sequence of regression on hazards
- or $g(s|y, \theta_2) = g(s|\theta_2)$, a categorical or ordinal distribution on $\{1, ..., J\}$.
 - A convenient choice of $g(s|\theta_2)$ in this case is the ordinal probit model

'Nonparametric'?

- While the proposed method is "nonparametric" in the sense of having large support in the space of random probability measures, draws from the Dirichlet process mixture resemble finite mixture models.
- but in light of the curse of dimensionality, it is not feasible to estimate the distribution of longitudinal data for even moderate J in a fully nonparametric manner
- the Dirichlet process mixture combats this by shrinking towards latent class models with a small number of dominant components.

UE. UT-Austin

A. Linero and M. Daniels

Extrapolation distribution I

We now need to specify the extrapolation distribution

 $p(y_{mis}|y_{obs}, s, \omega)$

- Identifying restrictions, which express the extrapolation distribution as a function of the observed data distribution, provide a natural starting point.
 - available case missing value (ACMV) restriction sets

$$p_k(y_j|\overline{y}_{j-1},\omega) = p_{\geq j}(y_j|\overline{y}_{j-1},\omega),$$

for all k < j and $2 \le j < J$; equivalent to the MAR restriction under monotone missingness (Molenberghs et al., 1998),

$$P(S = s | Y, \omega) = P(S = s | \overline{Y}_s, \omega).$$

UF. UT-Austin

A. Linero and M. Daniels

Extrapolation distribution II

- A subclass of identifying restrictions is generated by the non-future dependence assumption (NFD) (Kenward et al., 2003),
 - the probability of dropout at time s depends only \bar{y}_{s+1} ,

$$P(S = s | Y, \omega) = P(S = s | \overline{Y}_{s+1}, \omega).$$
(3)

NFD holds if and only if

$$p_k(y_j|\overline{y}_{j-1},s,\omega) = p_{\geq j-1}(y_j|\overline{y}_{j-1},s,\omega), \tag{4}$$

for k < j-1 and $2 < j \le J$, but places no restrictions on $p_{j-1}(y_j | \bar{y}_{j-1}, s, \omega)$. MAR when $p_{j-1}(y_j | \bar{y}_{j-1}, s, \omega) = p_{\ge j}(y_j | \bar{y}_{j-1}, s, \omega)$.

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF, UT-Austin

Extrapolation distribution III

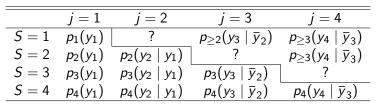


Table : Schematic representation of NFD when J = 4. Distributions above the dividing line are not identified by the observed data.

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF, UT-Austin

Identification within NFD I

We consider two methods to identify the distribution $p_{j-1}(y_j | \bar{y}_{j-1}, s, \omega)$ under NFD.

1 consider the existence of a transformation $T_j(y_j|\bar{y}_{j-1}, \xi_j)$ such that

$$[Y_j|\bar{Y}_{j-1},S=j-1,\omega] \stackrel{d}{=} [T_j(Y_j|\bar{Y}_{j-1},\boldsymbol{\xi}_j)|\bar{Y}_{j-1},S\geq j,\omega],$$

where $\stackrel{d}{=}$ denotes equality in distribution.

- If T_j is chosen so that T_j(Y_j| Y
 _{j-1}, 0) = Y_j then deviations of ξ_j from 0 represent deviations of the assumed model from MAR.
- Wang and Daniels (2011) implicitly take this approach,

A. Linero and M. Daniels

UF, UT-Austin

イロト イポト イヨト イヨト

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

Identification within NFD II

2 an exponential tilting assumption (Birmingham et al., 2003)

$$p_{j-1}(y_j|\overline{y}_{j-1},s,\omega) = \frac{p_{\geq j}(y_j|\overline{y}_{j-1},s,\omega)e^{q_j(\overline{y}_j)}}{\int p_{\geq j}(y_j|\overline{y}_{j-1},s,\omega)e^{q_j(\overline{y}_j)} dy_j}.$$
 (5)

- The function q_j(ȳ_j) characterizes the influence of y_j on the scale of log-odds ratios of the probability of dropout at time S = j − 1 conditional on S ≥ j − 1.
- When a normal kernel is used to model the outcome response, $q_i(\bar{y}_i) = \gamma_j y_j$ leads to tractable inference

(日) (同) (三) (三)

UF. UT-Austin

A. Linero and M. Daniels

UF. UT-Austin

Analysis of Schizophrenia trial I

- we analyze data from a clinical trial designed to determine the efficacy of a new drug for the treatment of acute schizophrenia.
- response was measured at baseline, Day 4, and Weeks 1, 2, 3, and 4 (so J = 6).
- three treatment (V) arms corresponding to the test drug (81 subjects), active control (45 subjects), and placebo (78 subjects)
- primary endpoint: mean change from baseline of the Positive and Negative Syndrome Scale (PANSS) after Week 4,

$$\eta_{v} = E(Y_6 - Y_1 | V = v, \boldsymbol{\omega})$$

A. Linero and M. Daniels

Analysis of Schizophrenia trial II

- Moderate dropout: 33%, 19%, and 25% dropout for V = 1, 2, 3
- Many dropout patterns were sparse
 - for example, in the active control arm, only a single subject dropped out at each time j = 1, 2, 3.

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF, UT-Austin

Informative priors under MNAR I

- We compare inferences under MAR to inferences under NFD.
- To complete the NFD specification we first introduce sensitivity parameters ξ_i common across treatments such that

$$[Y_j|\bar{Y}_{j-1},S=j-1,V=v,\omega] \stackrel{d}{=} [Y_j+\xi_j|\bar{Y}_{j-1},S\geq j,V=v,\omega].$$

- MAR corresponds to $\xi_j \equiv 0$ for all j.
- We specify an informative prior ξ_j ^{iid} ~ Uniform(0,8). So, deviations from MAR
 - are chosen to be at most roughly one residual standard deviation (8)
 - are restricted to be positive to reflect the fact that those who dropped out are a priori believed to have higher PANSS scores on *average*.

A. Linero and M. Daniels

UF, UT-Austin

UF. UT-Austin

Informative priors under MNAR II

- we also compare to different missingness mechanisms across treatments.
 - fewer of the dropouts in the active arm dropped out due to lack of efficacy versus the placebo and test arms
 - as a result, we consider MAR for the active arm and the MNAR priors for the other two arms.

A. Linero and M. Daniels

Informative priors under MNAR III

Model	$\eta_1 - \eta_3$	η_2 - η_3	DIC			
MAR Model						
DP	-1.9(-8.9, 5.2)		7762			
DP Sensitivity Analysis						
MNAR	-1.7(-9.3, 5.9)	-7.4(-15.3, 0.6)	7762			
MNAR-2	-1.7(-9.3, 5.9)	-8.3(-16.3, -0.3)	7762			

Table : Inferences under different models for the Schizophrenia data. MNAR refers to the model which takes $\xi_j \sim \text{Uniform}(0,8)$ for all treatments; MNAR-2 assumes that $\xi_j \equiv 0$ for the active control arm only.

'signficant' CI under MNAR-2

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF, UT-Austin

Informative priors under MNAR IV

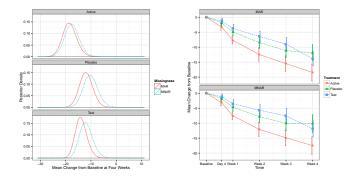


Figure : Density estimates for η_{v} (left) and posterior estimate of mean change from baseline over time under MAR and MNAR.

A. Linero and M. Daniels

UF. UT-Austin

Conclusions I

- We have introduced a general methodology for conducting nonparametric Bayesian inference under nonignorable missingness
 - allows for a clear separation of the observed data distribution and the extrapolation distribution.
 - allows both flexible modeling of the observed data and flexible specification of the extrapolation distribution.
 - provides similar robustness to semiparametric AIPW (simulations not shown)

Conclusions II

 there is nothing particular about the Dirichlet process to our specification; in principle

$$p(y_{obs}, s | \boldsymbol{\omega}) = \int p^{\star}(y_{obs}, y_{mis}, s | \boldsymbol{\omega}) dy_{mis}.$$

could be applied to any joint distribution $p^*(y, s|\omega)$ provided that inference is tractable.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ >

UF. UT-Austin

A. Linero and M. Daniels

Conclusions III

- Model complexity controlled both by our prior on α, the mass of the Dirichlet distribution, or using a hierarchical specification of the prior on *H* forcing the latent classes to be similar.
- R package available to implement these models
- intermittent missingness implicitly handled under assumption of partial ignorability

- extend work to applications with covariates.
 - Often covariates are used to help with imputation of missing values, or to make the MAR assumption more plausible, but are not of primary interest (i.e., auxiliary covariates).
 - incorporation of covariates in a semiparametric fashion
 - extend these methods to non-monotone missingness.
 - extend these methods to more complex data (e.g., multivariate longitudinal data) - challenge is specification of the extrapolation distribution

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF. UT-Austin

- We work with an approximation of the Dirichlet process mixture based on truncating the stick-breaking construction at a fixed K by setting β'_K ≡ 1 (Ishwaran and James [IJ], 2001)
- We break inference into two steps.
 - Draw a sample of (θ⁽¹⁾, β₁, ..., θ^(K), β_K) from the posterior distribution given the observed data using the working model p^{*}(y, s|ω).
 - 2 Calculate the posterior distribution of desired functionals of the true distribution $p(y|\omega)$.

(日) (同) (三) (三)

UF. UT-Austin

• We use a data-augmentation scheme similar to IJ but which also includes augmenting the missing data for step 1.

A. Linero and M. Daniels

 Once we have a sample from the posterior distribution of (θ^(k), β_k) in step 1, scientific interest often lies in functionals of the form

$$E[t(Y)|\omega] = \int t(y)p(y|\omega) \, dy.$$

Define
$$\phi_j \equiv {\cal P}({\cal S}=j|m{\omega}) = \sum_{k=1}^{{\cal K}} eta_k {\sf g}(j|m{ heta}_2^{(k)})$$
. Then,

$$E[t(Y)|\omega] = \sum_{j=1}^{J} \phi_j E[t(Y)|S = j, \omega].$$

- ϕ_j is typically available in closed form given ω ,
- the expectation E[t(Y)|S = j, ω] has a complicated form and depends on the missing data assumption.

A. Linero and M. Daniels

UF, UT-Austin

Inference III

under MAR,

$$E[t(Y)|S = j, \omega] = \int t(y) \cdot p_j(\bar{y}_j|\omega) \cdot p_{\geq j+1}(y_{j+1}|\bar{y}_j, \omega)$$
$$\cdot p_{\geq j+2}(y_{j+2}|\bar{y}_{j+1}, \omega) \cdots p_J(y_J|\bar{y}_{J-1}, \omega) \, dy.$$

• to calculate $E[t(Y)|\omega]$ we use Monte Carlo integration, sampling pseudo-data $Y_1^*, ..., Y_{N^*}^*$, and forming the average $\frac{1}{N^*} \sum_{i=1}^{N^*} t(Y_i^*)$ (easy for NFD in general).

UF. UT-Austin

A. Linero and M. Daniels

Simulations I

- assess the performance of our method as an estimator of the population mean at the end of a clinical trial with J = 3 time points and N = 100.
- we generate data under the following conditions:
 - S1: $Y \sim N(\mu, \Sigma)$. Missingness is MAR.
 - S2: Y is distributed as a 50-50 mixture of normal distributions; chosen to make the distributions of (Y_1, Y_2) and (Y_1, Y_3) highly non-linear while (Y_2, Y_3) is roughly linear. Missingness is MAR.

Image: A math a math

UF. UT-Austin

A. Linero and M. Daniels

Simulations II

- we compare out method to
 - (a) modeling the data as normally distributed
 - (b) augmented inverse-probability weighting (AIPW); solves the estimating equation

$$\sum_{i=1}^{n} \left\{ \frac{I(S_i = J)}{P(S_i = J|Y_i)} \varphi(Y_i, \boldsymbol{\theta}) + \sum_{j=1}^{J-1} \frac{I(S_i = j) - \lambda_j(Y_i)I(S_i \ge j)}{P(S_i > j|Y_i)} E[\varphi(Y_i, \boldsymbol{\theta})|\bar{Y}_{ij}] \right\} = 0,$$

where $\sum_{i=1}^{n} \varphi(Y_i, \theta) = \mathbf{0}$ is a complete data least-squares estimating equation for the regression of Y_1 on Y_2 and (Y_1, Y_2) on Y_3 .

 "doubly robust" in the sense that if either the dropout model or mean response model is correctly specified then the associated estimator is CAN

<ロ> (日) (日) (日) (日) (日)

UF. UT-Austin

A. Linero and M. Daniels

Simulations III

- Under (S1) the AIPW estimator used was constructed with the correct mean and dropout models
- Under (S2) the AIPW estimator was constructed assuming $E[Y_2|Y_1]$ to be quadratic in Y_1 and $E[Y_3|Y_1, Y_2]$ quadratic in Y_1 and linear in Y_2 , with dropout modeled correctly (and so the estimator is consistent by double robustness).
- The expectation $E[\varphi(Y, \theta) | \overline{Y}_j]$ is taken under the assumption that the mean response is modeled correctly.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Simulations IV

	Bias	95% CI Width	95% CI Coverage Probability	Mean Squared Error	
		Norma	al Model (S1)		
DP	-0.001(0.004)	0.493(0.001)	0.963(0.006)	0.01443(0.0006)	
Normal	-0.005(0.004)	0.494(0.002)	0.944(0.007)	0.01524(0.0007)	
AIPW	-0.001(0.004)	0.470(0.002)	0.943(0.007)	0.01530(0.0007)	
Mixture of Normal Models (S2)					
DP	-0.010(0.004)	0.542(0.001)	0.950(0.007)	0.0182(0.0008)	
Normal	-0.039(0.005)	0.586(0.001)	0.949(0.007)	0.0220(0.0010)	
AIPW	0.001(0.004)	0.523(0.001)	0.944(0.007)	0.0185(0.0008)	
Mixture	-0.006(0.004)	0.536(0.001)	0.952(0.007)	0.0182(0.0008)	

Table : Comparison of methods for estimating the population mean at time J = 3.

A. Linero and M. Daniels

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

UF, UT-Austin

・ロト ・回ト ・ヨト